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Abstract

Individuals trade present for future consumption across a range of economic behaviors,

and this tradeoff may differ across socioeconomic groups. To assess these tradeoffs,

we estimate a dynamic model of residential solar adoption and system sizing using

household-level data that offer plausibly exogenous variation in the future benefits

from adopting relative to upfront costs. We find implicit discount rates of 15.3%,

13.9%, and 10.0% for low-, medium-, and high-wealth households. This heterogeneity

remarkably persists after accounting for credit scores. Counterfactual simulations

demonstrate opportunities to reduce the regressivity of solar adoption, increase policy

cost-effectiveness, and improve welfare for low-wealth households.
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1 Introduction

The rate at which individuals trade present consumption for future consumption is important

across a range of economic behaviors, including savings, human capital formation, and invest-

ment in personal health. Understanding this tradeoff is critical for public policy, which often

subjects individual actions and behaviors to incentives or restrictions to achieve long-run ob-

jectives that are deemed socially desirable. Laboratory experiments with hypothetical choices

to examine intertemporal decision-making are numerous, but credible quasi-experimental

estimates of discount rates revealed by market decisions are relatively rare (Hausman, 1979;

Lawrance, 1991; Warner and Pleeter, 2001; Bollinger, 2015; de Groote and Verboven, 2019).

Evidence on how discount rates vary across policy-relevant sub-populations is even scarcer.

As noted by Barsky et al. (1997), econometric estimation of preference parameters, including

time preferences, may be “particularly inadequate” when heterogeneity of preferences in the

population is important, due to identification issues.

This study examines how consumers of different wealth groups trade off present for future

consumption in the adoption of rooftop solar photovoltaic (PV) systems. We find economically

meaningful differences in implicit discount rates between low- and high-wealth homeowners:

15.3% versus 10.0%.1 This leads high-wealth households to value the same stream of solar

benefits over time approximately 50% more than low-wealth households. One novel aspect of

our study is that we obtain household-level credit score data to explore the role of borrowing

costs, and we find that our heterogeneity result remarkably persists even for households of

different wealth groups but who all have prime credit or better. We also present evidence

on other explanations for the heterogeneity result that suggest these other explanations are

much less likely than real differences in the pure rate of time preference.

These results are important for policy. There has been substantial criticism of past solar

policies by economists for primarily benefiting high-wealth households and shifting electricity

system fixed costs from relatively wealthy households who are more likely to adopt rooftop

solar to relatively poor households who are less likely to adopt (Borenstein and Davis, 2016,

2024). Net Energy Metering (NEM) is a very common policy that has been used at some

point by 43 states in the United States. Under the standard NEM policy, solar adopters

can export excess solar generation above consumption to the grid and receive credit for it

in future months, thus earning compensation at the retail rate of electricity (usually up

to the consumer’s total annual consumption). The value of this incentive to consumers

1We refer to the estimated discount rates as ‘implicit’ because they are the rates that rationalize observed
decisions.
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critically depends on their discount rates, which may vary across wealth groups.2 Despite the

prevalence of NEM policies, we are not aware of any previous research that has evaluated

their effectiveness in spurring additional solar PV capacity across wealth levels as a result of

differences in discounting, or their effect on consumer welfare.

Our work also relates to questions about the viability of traditional utility models as solar

market share increases. If there is more distributed solar generation and the fixed costs of

the grid are spread across fewer non-solar customers, this could lead to higher electricity

rates and possibly induce further grid defections that could yield a “utility death spiral”

(Kind 2013). In response to concerns about equity and the long-run viability of traditional

utility business models, many states across the United States are currently reducing their

compensation for excess solar electricity fed into the grid. For example, in 2023, California

implemented “NEM 3.0,” which reduced compensation for excess solar electricity by about

75%, a drastic change in the long-term benefit of rooftop solar. The effects of such a policy

could differ across the population if there is heterogeneity in intertemporal tradeoffs.

In this paper, we employ rich and unique micro-data on rooftop solar panel adoption,

and on the expected returns from such adoption. Adopting rooftop solar entails an upfront

cost to install panels that generate future electricity cost savings. These savings depend

on the system characteristics, sunlight, and the compensation rate for excess generation.

Using proprietary Google Sunroof data for rooftop-specific expected electricity generation of

optimal solar installations for every home in select California zip codes along climate borders,

in conjunction with household utility bills, we calculate the value of the flow of benefits of

both purchasing and leasing solar as a function of the implicit discount rate for the household.

In this calculation, we account for the household’s observed electricity consumption and the

optimal installation size for using an optimal sizing model. We combine these data with

observed solar adoptions and household-specific demographic information to estimate our

structural model.

In our study, heterogeneous implicit discount rates and marginal utility of income param-

eters are identified from plausibly exogenous household-specific variation in future electricity

bill savings from adopting solar due to differences in solar irradiance (as a function of rooftop

characteristics, such as pitch, orientation, and shading from trees and structures) and from

sizable differences in electricity rates across administratively-determined climate zones within

the state. In previous work, econometric identification of discount rates often relies heavily

2Houde and Myers (2021) provide evidence that in the realm of household appliances, higher income
consumers weight operating costs more than purchase price.

3



on strong functional assumptions.3 Some papers utilize arguably exogenous changes to the

environment, such as the entry of a new choice option (Warner and Pleeter, 2001) or policy

change (Bollinger, 2015; de Groote and Verboven, 2019). These approaches using time-series

variation typically involve strong assumptions about agent expectations. In contrast, our

approach identifies implicit discount rates from cross-sectional variation at the household level

in the relative value of the upfront costs of installing solar and the long-term benefits, leaving

us less dependent on assumptions about unobserved consumer expectations for identification.

Our estimation approach uses conditional choice probabilities (CCPs) and generally

follows Arcidiacono and Miller (2011). However, our utility bill data is anonymized, so we

cannot match each non-solar household to a specific utility bill. This leads to an econometric

challenge akin to the challenge of incorporating micro-data into BLP estimation (Conlon and

Gortmaker, 2023), due to the fact that household-level likelihoods are no longer independent

within zip code.4 We overcome these challenges by integrating over the observed zip-code

empirical distribution of household electricity consumption with replacement.

Based on our estimation results, we run two counterfactuals that change the solar policy

while holding the rest of the electricity rate structure fixed. In our first counterfactual, we

find that if the NEM compensation is substantially reduced to the average avoided cost of

solar generation in California and half of the generated solar electricity is exported to the

grid, then solar adoption for both wealth groups would decrease by 14%. Yet the consumer

surplus reduction would be almost five times higher for high wealth households, highlighting

how much more high-wealth households value NEM benefits. Such a policy would also reduce

environmental benefits but would substantially decrease federal tax credit outlays and benefit

electric utilities.

In a second counterfactual, we again replace NEM with a scheme that compensates excess

solar generation at the avoided cost. But we take approximately half of the funding that

would have been used for NEM payments and allocate that funding to upfront subsidies

(split between a per-W and per-installation subsidy), such that the total installed capacity is

roughly the same as under the baseline (in MW). The result is a very different distribution

of installations. Under this counterfactual, high-wealth installations decrease by 3%, and

low-wealth installations increase by 21% (overall installations increase by 7%, although they

are smaller on average, leading to the same total installed MW). This leads to a 39% decrease

3For example, Hausman (1979) assume an exact lifetime for air conditioners, no deterioration over time,
no differential in expected inflation rates of appliance prices and electricity, and constant utility over time for
air conditioning.

4To see why, consider that if one specific household is a high-consumption household, this would lower the
probability that the other households in a zip code can also be a high-consumption household because the
aggregation of all household consumption within a zip code must equal the observed empirical distribution.
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in consumer surplus for high wealth households and a 10% increase for low wealth. We

calculate the marginal benefit of public funds (Hahn et al., 2024) of the additional upfront

subsidies in this counterfactual to be substantially less than one for all households, but double

in size for low-wealth households relative to high-wealth households, indicating a larger overall

social willingness-to-pay of those subsidies for low-wealth households. Subsidies to wealthy

households, of course, also increase inequality concerns.

Our estimates provide credible evidence that individual implicit discount rates that are

rationalized by solar adoption decisions exceed common market rates and that these vary

by wealth in ways that have important implications for economists and policymakers. This

finding of relatively high implicit discount rates accords with results in the ‘energy-efficiency

paradox’ literature of undervaluation of future energy savings in energy efficiency purchases

(Metcalf and Hassett, 1999; Allcott and Greenstone, 2012; Gerarden et al., 2017; Gillingham

and Palmer, 2014; Gillingham and Myers, 2025). Our result that the heterogeneity in

implicit discount rates persists after accounting for creditworthiness is new to the small but

growing literature on residential solar adoption (Kirkpatrick and Bennear, 2014; Hughes and

Podolefsky, 2015; Pless and van Benthem, 2016; Gillingham and Tsvetanov, 2017; Feger et

al., 2022). Indeed, one major recent line of solar research is on spatial misallocation of solar

(Sexton et al., 2021; Lamp and Samano, 2023; Colas and Saulnier, 2024). Our results highlight

a structural inequity in existing solar policy, with a misallocation between upfront subsidies

and NEM benefits. We show that standard NEM is a regressive policy and that a switch

to upfront subsidies can not only improve cost-effectiveness but also improve distributional

equity.

2 Background

2.1 Solar Policy

The adoption of rooftop solar PV has benefited from billions of dollars of subsidies. The

most prominent subsidies in the United States over the past two decades have been the

many state-level upfront adoption rebates, such as the California Solar Initiative program,

the federal investment tax credit (ITC), and NEM. Elsewhere in the world, popular policies

include NEM and feed-in tariffs, in which solar adopters send electricity generated from

solar to the grid and are compensated at a price that is usually above the retail electricity

rate. Net-billing tariffs (NBT) refer to mechanisms in which excess solar generation above

consumption that is exported to the grid is compensated at some predetermined rate that

is usually below the retail electricity rate. Under NBT, consumers receive a ‘net bill’ each
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month and credits for more generation than consumption in each month cannot roll over, as

they can under NEM. California’s new “NEM 3.0” is a version of NBT, with some additional

elements to encourage energy storage. In recent years, most U.S. state rebate programs have

been discontinued, but the federal ITC is still in place and NEM is still widely used across

the country, despite past and current efforts to phase out both types of incentives.5

From a social welfare perspective, policies to encourage adoption of solar can be motivated

by innovation market failures, such as learning-by-doing, or as a second-best approach to

addressing uninternalized environmental externalities. One key distinction between the

different types of solar subsidies is whether they are upfront adoption subsidies, such as tax

credits or rebates, or flow subsidies, such as NEM and feed-in tariffs. Typically, a subsidy

on the extensive (adoption) margin would sacrifice efficiency on the intensive (generation)

margin, as there would be less incentive to improve the productivity of generation and

undertake maintenance to ensure generation (Aldy et al., 2023). However, in the case of

solar panels, there is very little that can be done to improve efficiency of already-installed

rooftop systems and the systems rarely require routine maintenance.6 Therefore, the decision

to adopt solar is made as a “set it and forget it” decision requiring only consideration of the

up-front investment and the (constant) flow benefits for the next 25 years, which critically

depend on the household implicit discount rate.

The existing literature on the cost-effectiveness of solar subsidies has generally found

relatively high costs from upfront subsidies due to free-riders who would have installed solar

anyway without the subsidies (Hughes and Podolefsky, 2015; Gillingham and Tsvetanov,

2014). However, it might still be possible to justify at least some rooftop solar subsidies on

economic-efficiency grounds based on uninternalized social costs of greenhouse gas emissions

(Rennert et al., 2022), uninternalized local air pollution emissions (Sexton et al., 2021), and

learning-by-doing externalities (Bollinger and Gillingham, 2023). Yet without careful policy

design, the distributional consequences may be perverse, especially in a state like California

that has increasing block pricing for electricity, so that those who consume more (usually

wealthier households) pay higher rates and thus benefit more from adding solar.

2.2 Implicit Discount Rates Across Wealth Groups

This paper focuses on estimating implicit discount rates across wealth groups because they

are a crucial ingredient for comparing the welfare impacts of subsidy policies that have

different time profiles of benefits. However, while implicit discount rates characterize the

intertemporal tradeoff implied by actual decisions, they may capture more than just the

5The “One Big Beautiful Bill” has provisions to phase out the ITC.
6See for instance https://www.energysage.com/solar/101/solar-panel-maintenance/.
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pure rate of time preference of different groups. Differences in lending and borrowing costs,

the marginal propensity to consume, beliefs, and risk aversion can all also help explain the

tradeoffs observed by economists either in the laboratory or in the field (Cohen et al., 2020).

Coller and Williams (1999) show that the consumer’s real rate of return should equal their

discount rate only if it lies between their borrowing and lending costs, and thus differences in

borrowing rates or binding credit constraints could lead to higher implicit discount rates for

lower-wealth households than others (Allcott et al., 2015). We explore this in our setting by

examining how our results differ after accounting for the household’s credit score. Wealthier

consumers may also have a greater ability to smooth consumption due to greater liquidity,

which could also lead to observed intertemporal tradeoffs differing by wealth (Cubitt and

Read, 2007). This may be less relevant in our setting, as the flow subsidies we are examining

tend to be smooth over time.

It is possible that high-wealth households have different beliefs than low-wealth households

about the life of the panel, future electricity costs, how long they will be in their home,

and whether the solar panel will be capitalized in the transaction price if they sell. We will

discuss each of these and provide evidence suggesting that they are not likely to explain our

heterogeneity results. Finally, risk aversion may differ across wealth groups, which have very

different levels of consumption. Cohen et al. (2020) show that in a simple two-period tradeoff,

risk aversion scales down the pure rate of time preference from the estimated “implicit”

discount rate rationalized by decisions. We allow for this by modeling heterogeneity in the

marginal utility of income across wealth groups.

3 Data

In order to identify heterogeneity in implicit discount rates across wealth groups without

strict distributional assumptions, it is essential to have rich household-level data on the main

drivers of solar adoption. To this end, we assemble a detailed household-level data set on

solar adoptions, home characteristics, and household characteristics covering the period 2014

to 2016. Our research design focuses on adjacent zip codes in California that face different

electricity rates due to being categorized into different climate zones. We identify 28 zip

codes in Pacific Gas & Electric (PG&E) territory that are entirely contained in a single

climate zone and have an adjacent zip code in a different climate zone. Figure 1 illustrates

the zip codes included in our study, all of which are in the greater San Francisco Bay Area of

California.
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Figure 1: Sample zip codes. Zip codes in PG&E service territory that share a CEC climate
zone boundary. Climate zones determine the electricity pricing scheme each zip code faces.
Adjacent zip codes along a boundary face a different average value of offset electricity. Colors
indicate particular climate zone boundaries, with the shading illustrating the side of the
boundary the zip code is on.
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3.1 Data sources

Our first data source contains address-level data on home characteristics from CoreLogic. We

focus on all single-family detached owner-occupied non-mobile home residences that were

built before 2014 in the 28 zip codes. The data include the year built, heated square footage,

and number of stories. This provides the set of potentially adopting households.

Our second data source is publicly-available voter registration data from the California

Secretary of State. For each address, we categorize households to be Democrat, Republican,

or mixed.7 We merge in household characteristics data from InfoUSA, including the number

of children, race, home-ownership status, the length of time at the residence, the number of

open lines of credit, and the calculated wealth of the household, inclusive of equity in the

home. We use credit score data from Experian. If an address has multiple households, we use

the data from the household that occupied the home for the plurality of our study period.

Our installation-level data set of solar adopters is a restricted-access version of the

Lawrence Berkeley National Laboratories “Tracking the Sun” (TTS) database. It contains

the address of the installation, application date, installation date, system size (in watts),

and total system cost exclusive of subsidies and tax credits. Our study window is after the

California Solar Initiative (CSI) subsidy period had ended. We match the solar adopter data

to the data on potential adopters with a 96% success rate, and we remove any households

that adopted prior to 2014. The final sample contains 7,244 solar adoptions during the study

period out of a total of 183,667 potential adopting households. Finally, we bring in data on

the amount of sun reaching each solar rooftop from Google Sunroof and data on household

electricity consumption from PG&E. To help provide interpretability for our wealth results,

we merge in credit data from Experian.8 Data construction details are in Appendix A.

7We identify the household as registered Democrat if and only if both of the two longest-registered 2014
voters are registered Democrats or are registered with the Green Party.

8Experian performed the matching based on names and addresses, reaching a match rate of 63%. Experian
data is further discussed in Appendix I.1
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Table 1: Sample Summary Statistics

All Adopters Non-adopters

Mean Std. dev Mean Std. dev Mean Std. dev

Variables (N=184,667 households)

Wealth ($1,000’s) 2500.09 1017.81 2624.27 909.25 2494.99 1021.70

1(Low wealth bin) 0.33 0.47 0.24 0.43 0.34 0.47

1(Medium wealth bin) 0.33 0.47 0.42 0.49 0.33 0.47

1(High wealth bin) 0.33 0.47 0.34 0.47 0.33 0.47

Lines of credit (count) 0.67 1.41 0.75 1.53 0.66 1.40

1(Children present) 0.32 0.47 0.41 0.49 0.31 0.46

Length of residence (years) 15.56 12.26 13.42 10.65 15.65 12.31

Square Footage (1,000 sq.ft.) 1.79 0.75 2.16 0.81 1.77 0.75

1(Single story) 0.32 0.47 0.45 0.50 0.32 0.47

1(Dem voter registration) 0.43 0.49 0.45 0.50 0.43 0.49

1(Possible non-owner) 0.18 0.39 0.06 0.24 0.19 0.39

Adopted System Characteristics (N=7,244)

System Size (kW) 5.29 2.36

Low-Wealth Adopter Sys. Size (kW) 4.91 2.23

Med-Wealth Adopter Sys. Size (kW) 5.51 2.34

High-Wealth Adopter Sys. Size (kW) 5.29 2.45

1(Leased system) 0.45 0.5

Table 1 shows summary statistics for the homes and households in the sample by adopter

status, where we divide the sample into three wealth groups.9 Solar adopters tend to be

middle- and high-wealth, are more likely to have children, and have larger homes. Adopters

are only slightly more likely to be all-Democratic in voter registration, and have a shorter

length of residence.

3.2 Solar Irradiance and Electricity Consumption

Some of the relationships we observe in the summary statistics may be capturing heterogeneity

in the pecuniary value of adopting solar. To explicitly calculate the monetary benefit from

adopting solar, we need to know how much solar electricity would be generated for any given

installation on any given house. Thus, for every house in the base data, we leverage data on

the ‘effective’ solar irradiance that reaches each rooftop. By definition, solar irradiance is the

amount of sunlight that hits the surface of the earth and is a function of climate. It varies

considerably across the United States and around the world, and even within states, e.g.,

9The threshold between low and middle wealth is $1.96 million and between middle and high wealth is
$2.92 million. Wealth is inclusive of the value of the home.
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(a) Google Project Sunroof display (b) Solar generation profiles

Figure 2: Solar generation profiles for four selected rooftops on a single block in Solano
County, California. Panel (a) shows the Google Sunroof imagry, while panel (b) shows the
marginal generation for each household per panel on the vertical axis and the number of panels
on the horizontal axis. Contrast dashed green (house D), which exhibits low irradiance (300
kWh/yr) for the first panel and a slow decline up to 15 panels followed by a leveling off, with
gray (house A), which exhibits strong irradiance for the first 20 panels (400 kWh/yr). Dashed
blue (house C) shows high initial irradiance (365 kWh/yr) but a rapid decline corresponding
to the multifaceted roof line.

across zip codes. Effective irradiance in our data also accounts for the obstruction of solar

irradiance by surrounding structures and vegetation, as well as panel orientations and pitches

that may fail to capture all irradiance due to rooftop characteristics. Effective irradiance

provides micro-level variation in the electricity generation of a unit of solar capacity, namely

from household to household within neighborhoods. Moreover, for a given home, effective

irradiance varies across the rooftop, with some portions of the rooftop receiving more sunlight

than others.

Figure 2 shows an example of the effective irradiance of four homes and what it means

for solar generation. Panel (a) shows Google Sunroof imagery of the homes as modeled by

Google based on satellite imagery. Panel (b) shows how expected solar generation declines

with more panels due to reduced irradiance.10 Google Sunroof predicts electricity bill savings

from adopting solar for each rooftop based on the irradiance profile, electricity rate, and

the optimal size as a function of household electricity consumption and utility rate. Homes

located in deep shade or with a roof profile that does not angle southward need more panels

10While the expected solar generation is downward sloping with the number of solar panels, the relationship
is not necessarily monotonic. Following standard installation practice, each roof segment, or partition of
a roof with a common pitch and azimuth, is filled before an additional segment is used. Thus, small non-
monotonicities can occur when the first panel on a subsequent segment is installed. When non-monotonicities
imply multiple equimarginal crossings, we select the smaller number of panels.
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to generate a given amount of electricity, increasing the cost per kWh to that household.

This and the utility rate borders provide our two main sources of identifying variation.

The value of adopting solar depends on household electricity consumption in our setting

for two reasons. First, there is minimal compensation for generation above the household’s

annual consumption.11 Second, there is an increasing tiered electricity rate structure, so

the marginal value of generation to the consumer is greater if it reduces a high-consuming

household’s electricity imports from the grid. Because of the importance of this rate structure,

we obtain data on annual electricity consumption for all customers who reside in any of the

28 PG&E border zip codes in our sample. The timing of solar adoption in the administrative

data enable us to match solar adopters with their energy consumption data. For non-adopting

households, we only know their zip code. Further details about the consumption data are in

Appendix A, as is information about PG&E electricity rates.

We can calculate the marginal levelized cost per kilowatt-hour (kWh) for solar generation

by discounting the monetary value of the flow of generation over time.12 This marginal cost

per kWh is increasing with more solar panels due to the declining marginal generation with

more panels (from reduced irradiance due to the best locations being taken first). Figure 3

plots the per-kWh levelized cost over the number of panels for three of the four home profiles

from Figure 2 (one home is removed to simplify the figure). These levelized cost curves are

the upward sloping lines. Figure 3 also shows the weakly decreasing step functions illustrating

the cost of the marginal unit of grid electricity for each home. Drops in these step functions

occur where the number of panels on each rooftop generates a sufficient amount of electricity

for the household to drop down to a lower electricity rate tier.

The intersection of each step function with the upward-sloping levelized cost curve is

marked with a letter for the household, and it refers to the optimal solar system size where

the marginal benefit of another panel equals the marginal cost. We divide our sample into

five equal electricity consumption bins based on average consumption over the sample period.

Panel (a) assumes that the households that are in the highest bin, while panel (b) assumes

that the households in the 2nd bin.

To better understand Figure 3, begin with panel (a). Consider home D (green dashed

line). The upward-sloping marginal cost per kWh dashed line crosses the electricity rate step

function when the system size contains six panels (pointed out by D*). Home D receives

11Compensation for excess generation through Net Surplus Compensation (NSC) was set by the California
Public Utilities Commission (CPUC) at roughly two to three cents per kWh, far below the marginal levelized
cost of solar for any household in our sample. Thus, we treat NSC as negligible.

12The levelized cost is a measure computed as the present discounted value of lifetime costs divided by
lifetime production. We use the default rate of 4% employed by Google Sunroof, which reflects the defaults
commonly used by solar installers when recommending system size. We also convert from DC generation to
usable AC electricity.

12



(a) 5th Consumption Bin (b) 2nd Consumption Bin

Figure 3: Optimal System Sizes for Two Example Consumption Levels. Figure
shows the marginal per-kWh price of solar generation for the subset of homes from Figure 2b
along with the marginal grid price (dashed line) for consumption. Optimal installation sizes
are indicated with “∗” for each house.

much less irradiance than home B, and thus home B has a much lower marginal cost per

kWh (yellow upward-sloping line). The electricity rate step function for home B steps down

to a lower tier at a solar system size of 21 panels. This system size is also where the step

function crosses the marginal cost per kWh line, thus indicating that the optimal system size

for home B is 21 panels. Home C falls in between, with an optimal system size of 13 panels.

Panel (b), which shows the same four homes if they had electricity consumption in the

second consumption bin, illustrates much smaller optimal system sizes. Homes B and C both

have optimal system sizes of seven panels, while home D has such poor irradiance that it has

an optimal system size equal to the minimum installation size.13 In other words, it would not

make sense to install a solar system on this rooftop if the electricity consumption was in the

second consumption bin due to the lower electricity rates consumers in this consumption bin

face. The basic logic described here underpins our optimal sizing model.

3.3 Relationship between Effective Irradiance and Adoption

In Figure 4 we provide model-free evidence of the relationship between the probability of

adopting solar and the drivers of the expected stream of benefits that results from solar

13We set the minimum installation size to five panels which corresponds to the smallest observed installation
in our data.
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Figure 4: Model free evidence. Observed share adopting over quantiles of measures of
irradiance by wealth. (Left) shows the change in observed share adopting as first panel
irradiance increases. (Right) the change in observed share adopting as total generation at 15
panels increases. High and Medium wealth households respond more to irradiance than does
the Low wealth bin, evidenced by the more positive slope for High and Medium.

irradiance reaching a given rooftop. Panel (a) shows the relationship based on the the solar

generation of the first panel of the system, as that provides a good measure of the overall

sunlight reaching the rooftop in its best locations after accounting for trees and the shape

of the roof. Panel (b) shows the relationship based on the total generation from a 15-panel

array which can be thought of as a reasonable approximation of the relevant irradiance for

an actual installation.

Figure 4 shows two main relationships. First, adopting shares increase over all wealth

levels when irradiance increases, as one would expect. Second, the rate of increase is higher

for medium- and high-wealth households relative to the low-wealth households. This indicates

a wealth-based differential response to increases in the flow payoff of solar. If low-wealth

households are less responsive to increases in the flow payoffs, as is suggested in this figure,

then low-wealth households put less value on payoffs that occur in the future relative to the

present. This descriptive result provides intuition for some of the key variation in the data

that will be identifying our implied discount rate estimates.

4 Model

We develop a dynamic discrete choice model of residential solar installations. The motivation

for including dynamics to estimate implicit discount rates is that consumers have a “buy-or-
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wait” decision about adopting solar, with expectations about future electricity prices and

solar panel prices. A key innovation in our model is to include a static optimal solar system

size decision based on setting the marginal benefits of an additional panel from reduced use of

grid electricity equal to the marginal costs of installing that panel. Because of the granularity

of our data, we can calculate what the optimal installation size is for every potential adopting

household as a function of electricity consumption, as is illustrated in Figure 3.

The optimal system sizing model is important in our setting both for correctly calculating

the payoffs from installing solar for a given consumer and for running counterfactuals that

change upfront versus future payoffs, and thus affect the optimal system size. Once the

household and installer determine the optimal solar system size for the home, the household

then decides whether to install solar using a discounted net present value calculation. This

calculation explicitly accounts for consumer expectations of future electricity prices and solar

prices. Details are in Appendix B.

4.1 Solar Installation Decision

Our dynamic discrete choice model of solar installations, conditional on the optimal system

size, follows the literature in treating the adoption of solar as an exit action (e.g., de Groote and

Verboven (2019)). A distinguishing feature of our model is that it leverages household-level

variation in characteristics and climate zones for identification.

The consumer decides whether or not to install solar, j ∈ {0, 1}, where j = 1 is the

decision to install. The flow utility for choice j at time t is given by ujt(q0, q
∗)+σϵjt. q0 is the

household’s baseline electricity consumption prior to installing solar and q∗ is the electricity

generated by an optimally-sized solar system. The ϵjt is a stochastic structural error term

with scaling parameter σ.

We normalize the flow utility of not adopting solar to u0t = 0; accordingly, we include the

savings from using less grid electricity in the value of adopting solar. In what follows, we will

derive an expression for the value of both adopting solar and not adopting. Since we treat

adopting solar as an exit action, the expression for adopting solar will capture the discounted

stream of expected utility for all periods subsequent to the adoption; i.e. u1t = v1t, where

vjt is the choice-specific value function for choice j ∈ {0, 1} at time t (absent the additive

stochastic shock). The value of not adopting will be equal to the continuation value, as there

is the option of adopting later.

The total expected utility at time t is given by:

Vt(pt, Ct, Ft) =
∞∑
τ=t

ρτ−tE
[
max
j∈{0,1}

(ujτ + σϵjτ )

]
, (1)
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where ρ is the household’s discount factor and p is the electricity price. Ct is the variable

cost of installing solar to the consumer and Ft is the fixed cost of the system. Both Ct and

Ft are inclusive of rebates and the tax credits.

By Bellman’s optimality principle, we can also define the value function recursively as:

V (p, C, F ) = max
j∈{0,1}

(
vj + σϵj

)
, where

vj ≡ E [uj|p, C, F ] + ρE [V (p′, C ′, F ′|p, C, F )] .

The prime notation indicates the next period’s value of the state variables (and we drop

the t subscript for notational clarity). We include an expectation term for uj in addition to

the next period’s continuation value because solar adoption is treated as a terminal choice

whose payoff also depends on the evolution of the state variables (p, C, and F ). We follow

de Groote and Verboven (2019) and assume rational expectations. We define a period in our

model as a quarter.

In order to derive an expression for the choice-specific value function of purchasing solar,

v1, we start with the total expected economic utility from the adoption of solar over its

lifespan T relative to not adopting (not inclusive of the ϵj):

δ1 =

∫ q0

q0−q∗

T∑
τ=1

(ρ(1 + ζ)(1− λ))τ−1 pτ (x)dx− C(K∗)− F. (2)

The integrand in (2) reflects the present value of future costs of grid electricity avoided given

solar generation of q∗ over the lifespan of the array, which is given by T .14 It is determined by

the per unit price of grid electricity, p(x), which potentially varies (as a step function) in x,

and by the grid electricity consumed, which is the difference in total electricity consumption

per period, q0, and the electricity generated by the optimally sized solar PV system q∗.

Consistent with the sizing model and following de Groote and Verboven (2019), ζ is the real

trend in electricity prices and λ is the panel depreciation factor.15 The C(K∗) and F are

the variable and fixed costs faced by the consumer of the solar installation of optimal size

14There is a very small approximation here: we treat the average price of offset grid electricity as not
changing as a result of the very small rate of panel depreciation, given by λ, leading to slightly less consumption
at the household’s lower tier.

15We estimate a climate zone and consumption bin-specific ζ according to p′(x) = (1 + ζ)p(x) + ϵp, with
results in Appendix D. Depreciation is incorporated in our model by further discounting the stream of benefits
of adopting generated from a non-depreciated solar array of the optimal size.
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K∗,16 and the variable costs decline each period by a factor η such that C(K∗)′ = ηC(K∗).17

Finally, the Xβ is the heterogeneous utility from electricity consumption and ancillary utility

derived from solar adoption, such as from a warm glow effect (Andreoni, 1990). Specifically,

Xβ includes time-invariant household-level demographic variables and home characteristics,

as well as an area fixed effect and a time fixed effect, both of which we assume consumers

expect to remain constant in future periods.

The expression for the expected economic value of purchasing solar over the life of the

solar array can thus be simplified to:

δ1 = θq∗p̄− C(K∗)− F, (3)

in which we define:

θ ≡
T∑

τ=1

((1 + ζ)(1− λ)ρ)(τ−1) (4)

The θ term can be interpreted as the number of current period payoffs that the household

values as equivalent to the stream of solar net benefits over T periods (similar to an indifference

break-even period but accounting for panel depreciation and rate increases). The p̄ is the

current average cost of grid electricity avoided by adoption of an optimally-sized installation

that produces q∗.18 Thus, θq∗p̄ captures the direct utility of solar electricity consumption

over the installation’s life.

Next, we need to make an assumption about what consumers expect to do after the

lifetime of their solar array. We formulate the problem as an infinite-time dynamic problem,

with the simplifying assumption that once a household makes the decision to adopt solar,

the household will re-adopt after the solar installation reaches the end of its working life,

i.e. every T quarters. This seems like a reasonable assumption given that the household has

already chosen to adopt.19 An alternative could be to set utility to equal zero after the life of

the solar array, but this would not capture either the net benefits of a new solar system or

the cost of consuming grid electricity in later periods.20

16We assume that all homeowners have sufficient tax liabilities to qualify for the 30% tax credit offered on
solar during this period, which we believe is a reasonable assumption for California homeowners.

17Upon examination of the data, the decline in solar PV costs appears to be in the variable costs and F
appears to be constant over time. This is consistent with cost declines that relate to either panel costs or
increased labor efficiency. We allow the fixed price component to vary by boundary group.

18As solar output declines gradually, it is possible for p̄ to also change slightly with tiered pricing, but we
will account for this in the estimation of how average price changes for different consumption bins over time.

19Some consumers might continue to use a very old depreciated system until it no longer works at all, but
we believe that using the standard 25-year lifespan is more reasonable than assuming all consumers continue
to use very old depreciated systems, many of which would no longer be working.

20In de Groote and Verboven (2019), the authors argue that they do not have to take a stand on whether
the dynamic problem is finite time or infinite time when using CCP estimation. This is technically true, but if
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Under these assumptions, the expected value of installing solar is given by the stream of

benefits from installing solar again every T quarters:

v1 = ω

 1

1− (ρ(1 + ζ))T
θq∗p̄︸ ︷︷ ︸

pEL

− 1

1− (ρη)T
C(K∗)− 1

1− ρT
F︸ ︷︷ ︸

pINV

+Xβ. (5)

The terms within braces in equation (5) is made up of the value of the stream of offset grid

electricity costs (pEL) and the upfront investment price (pINV ).21 These terms are a function

of a discount factor ρ, adjusted based on the trends in solar and electricity prices, as well

as the depreciation rate.22 The primary effect of ρ is to change the relative size of the two

terms, with a higher discount rate placing more emphasis on the installation costs.

We also include the marginal utility of income, ω, which we allow to depend on wealth.23

Households with higher wealth may have a lower marginal utility of income, even holding

implicit discount rates constant. As a reminder, since adopting solar is an exit action, u1 = v1.

4.2 Solar Leases

Nearly 45% of adopters during our study period used a third-party “leased” system wherein

the lessor bears all up-front cost to install the rooftop system, and the lessee agrees to pay

a price per unit of consumption during the life of the lease as part of a Power Purchase

agreement (PPA). In terms of up-front costs and benefits over time, the adoption decision for

a lessee is different from that of a purchaser. Specifically, leasing has the effect of amortizing

the cost of installing over the life of the panels. We are the first in the literature modeling

solar demand to explicitly model the lease option.

consumers view the problem as an infinite-time problem and the problem is treated as a finite-time problem,
this implicitly assumes that there is zero utility in period T + 1 (and later periods), since the expression
for the value of not adopting includes the current utility of not adopting plus additional T periods of value
when adopting and T + 1 when not adopting. This inconsistency is removed if the value in period T + 1 is
zero when adopting solar, but this means that the consumer treats the costs of grid electricity needed in the
current period as the same as the costs in period T + 1 (whether they be grid electricity costs or a new solar
array).

21This is the notation used in de Groote and Verboven (2019), who refer to these as the price terms.
22The parameters of ρi, the household discount factor, are estimated with a Normal cdf transformation

ρi = Φ(ρ+ αlow1(wealthi=low) + αmed1(wealthi=med)).
23We thank Ariel Pakes for noting the importance of heterogeneous marginal utility of income identified

separately from discount rates.
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Given standard pricing approaches for leased systems, we show in Appendix E that the

value of leasing simplifies to:

vl1 = ω
[
pEL − κlpINV

]
+Xβl. (6)

This is the same expression as for purchasing, excepting the addition the κl; κl depends on

discount rate and changes the relative tradeoff between upfront costs (which the installer

incurs but passes on to the household through the PPA payments, along with a markup) and

the long-term benefits of solar when leasing vs. purchasing. The κl is determined by the

installer’s pricing rule for how it amortizes the cost of installing, its expected rate of return

over the life of the panels, and the household’s discount rate (which determines how they

value the future PPA payments). Households with κl < 1 (those with a high enough discount

rate) get more economic benefit from leasing and households with κl > 1 get more economic

benefit from purchasing.

In our specification, we assume that households have an unobserved, permanent lease-

purchase type such that a lease-type household will consider only leasing when considering

adopting and vice versa for purchase-types. We view this as a less-restrictive assumption

than parameterizing lease-purchase type by observable household characteristics. We discuss

integration over the unobserved type in Section 5.2.

4.3 Continuation value when not adopting

To close the model, we need to make assumptions about consumer expectations. We follow

Scott (2014) and de Groote and Verboven (2019) by decomposing the expected continuation

value shown in equation (1) into a deterministic value plus a short run prediction error, ϵV ,

such that households are correct on average:

ρE [V (p′, C ′, F ′|p, C, F )] = ρ[V ′ + ϵV ]. (7)

We define ϵ0 ≡ ϵ0 + ρϵV such that the error term for non-adoption shown in equation (1)

is inclusive of both the stochastic utility of non-adoption and the short-run prediction error.

We assume ϵ0 and ϵ1 are distributed Type 1 extreme value with scale variance of σ. With

these assumptions, we can write the below expression for the value of non-adoption using

conditional choice probabilities (Hotz and Miller 1993), treating adoption as an exit state:

v0 = ρ (v′1 − σ ln(Pr′1) + σγ) , (8)
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in which v′ is a calculated next period value of adopting, Pr′1 is the next period adoption

probability, and γ is Euler’s constant.

In our main specification, we assume that consumers calculate v′ for both purchasing

and leasing by advancing prices according to the price trends and that they formulate a

belief about next period adoption probabilities, Pr′, using current period state variables

(conditional on type and consumption), which we estimate using a semi-parametric, flexible

logit expression. Under this assumption, the difference in the expressions for v1 and v0 in

equations (5) and (8) yields the difference in the value of adopting versus not adopting:

v1 − v0 = ω

[
1− ρ(1 + ζ)

1− (ρ(1 + ζ))T
θq∗p̄− κ

(
1− ρη

1− (ρη)T
C +

1− ρ

1− (ρ)T
F

)]
+ (1− ρ)Xβ + σρ (log(Pr′)− γ) (9)

in which κ is equal to one for purchasing and equal to κl when leasing. Under the assumption

of time-invariant type, Pr′ is the semi-parametric estimate of adopting in the next period

when of the same type. As a robustness check, we also estimate the model using an alternative

assumption for V ′ and Pr′ following de Groote and Verboven (2019) by using realizations of

the value of adoption in the next period and constructing the semi-parametric estimate of

the next period adoption probabilities with the realizations of next period state variables.

A household’s probability of adoption conditional on consumption bin is:

Prp = Λ

(
1

σ
(v1 − v0)

)
, (10)

in which Λ is the standard Logit cdf. These probabilities will form the basis of the

likelihood estimation procedure.

5 Identification and Estimation

5.1 Identification

5.1.1 Identifying Variation

Climate zone borders provide variation in p̄, which allows us to identify the marginal utility

of income from variation in the value of grid electricity that solar offsets, q∗p̄. Furthermore,

variation in rooftop irradiance across households similar in other dimensions (such as wealth)

provides plausibly exogenous variation in q∗, given the number of installed panels. Thus,

we have plausibly exogenous variation in the relative benefit of adopting solar versus the
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upfront costs of installing across wealth groups, which is crucial for identifying the discount

factor. For intuition on our identification, consider two households of the same wealth who

face different electricity prices and irradiance. The exogenous differences in electricity prices,

which affect solar adoption, allow us to pin down the marginal utility of income, while

exogenous differences in irradiance and electricity prices both influence the relative benefit of

adopting solar and allow us to identify the discount factor. This logic applies for households

in each wealth group.

Our identification strategy differs from previous work estimating discount factors that

draws entirely from policy changes that provide temporal shocks to future values (de Groote

and Verboven, 2019; Bollinger, 2015). Such an approach is highly dependent on the variation

in the estimated Pr′ for identification of the discount rate (see equation (9) and recall that

the discount factor enters both θ and the Pr′). Our empirical setting intentionally covers a

period with few changes over time in regulations or electricity rates that could affect Pr′.

Note that we can estimate σ using the cross-sectional variation in Pr′ since the discount

factor is identified using other sources of variation.

For further intuition on the variation identifying our results, recall Figure 4. This figure

provides a sense of the cross-sectional variation in irradiance that is driving the variation in

q∗p, along with variation in electricity consumption and electricity rates (from the climate

zones). A key takeaway from the figure is that while higher irradiance on a rooftop leads

to more adoption, the rate of increase in adoption is much steeper for high-wealth and

medium-wealth households than low-wealth households. In other words, greater payoffs

over the life of the solar system increase adoption more for high-wealth and medium-wealth

households than low-wealth households. This fundamentally is the variation identifying the

differences in implicit discount rates across wealth groups that we observe. The figure is

based on irradiance, but the basic pattern is the same if we also bring in electricity rates and

electricity consumption and look at adoption shares over per-period payoffs from solar.

5.1.2 Identification Assumptions

There are two key assumptions in our identification strategy for the implicit discount rate

parameters. First, we assume that the profile of irradiance hitting each rooftop is exogenous

with respect to the utility of adopting solar, conditional on household/home characteristics,

electricity consumption, and a set of geographic fixed effects, including climate zone boundary

fixed effects. Second, we assume that homes on one side of a climate zone are similar to

homes on the other, after conditioning on this same set of controls. We believe this second

assumption is very reasonable given the careful choice of zip codes in our study.
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One concern with our first identifying assumption could be endogenous sorting, whereby

homeowners intentionally purchase homes that are better suited for solar in a way our

controls do not already address.24 We consider this to be small concern given the high cost of

California real estate in comparison to the value of solar, and the fact that solar installations

were still relatively uncommon in the empirical setting. Furthermore, the average length of

residence for households in the sample is 13.6 years, indicating that most households in our

data purchased homes well before solar could have become a consideration.

Another potential concern with our first identifying assumption is the possibility that

households manipulate their local environment to improve solar irradiance reaching their

rooftop. For example, households could cut or trim trees. This would lead us to underestimate

the fixed costs of adopting solar and would be an issue for us if households with smaller

implied discount rates are more likely to incur the same fixed cost than those with higher

discount rates. However, much of our sample has few tall trees in residential neighborhoods

due to small lot sizes and relatively dry landscapes in California. In addition, we include

wealth fixed effects, which should help address any selection issue in tree trimming/cutting

across wealth bins.

5.2 Estimation

We estimate the household-level adoption model via maximum likelihood estimation. If

we could observe the purchase/lease type e ∈ {lease, purchase} and consumption bin b ∈
{1, ..., 5}, then each household’s contribution to the likelihood would be written simply as:

Libe =
∏
t

[Preibt]
yit [1− Preibt]

(1−yit), (11)

in which Preibt is the probability of household i adopting in time t, conditional on being type

e and bin b.

In practice, we do not observe the consumption bin b, nor the type e for non-adopting

households. Each non-adopter household is one of ten possible consumption × type com-

binations {1, ..., 5} × {leaser, purchaser}. We specify weights wibe as the probability that

household i consumes in consumption bin b and is of type e. With weights wibe, we integrate

the likelihood function over the unobserved heterogeneity:

24E.g. two-story homes have smaller roof areas holding square footage constant. Preferences for two-story
homes may be correlated with unobservable tastes for solar. We include an indicator for two-story homes in
our controls.
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L =
∏
i

∑
b

wib

∑
e

wie|b
∏
t

[Preibt]
yit [1− Preibt]

(1−yit) (12)

which requires evaluating ten conditional likelihoods per observation of household i and time

t and then integrating over consumption and lease types. In our main specification, we treat

the combination of consumption bin b and type e as permanent, unobserved heterogeneity.

The weights are based on ratios of individual- and zip-level likelihoods using the method laid

out in Arcidiacono and Miller (2011); estimation details are in Appendix F.

6 Results

6.1 Parameter Estimates

The estimates of our structural model include a large set of coefficients, most of which are

controls, such as demographic and voting variables. Table 2 presents our primary estimation

results for key parameters and all of the remaining parameter estimates can be found in

Appendix Table G.1. First, we present our estimated marginal utility of income (ω) across

the wealth groups, as this parameter is very important for our counterfactuals and provides

context for our implicit discount rate results. We observe that the high-wealth group has

a much lower marginal utility of income, at 0.03, than the low-wealth group, at 0.20. The

medium-wealth group falls in between. The marginal utility of income is an ordinal rather

than cardinal parameter, so we interpret the difference between the wealth groups. The

low-wealth group has a marginal utility over six times higher than the high-wealth group.

Table 2: Primary Estimation Results

Wealth Marginal Utility of Income Annual Discount Rate ¯̄θ Ratio

High 0.03 (0.02) 10.0% (0.44%) 52.6 1.5
Med 0.11 (0.14) 13.9% (1.76%) 39.0 1.1
Low 0.2 (0.07) 15.3% (3.29%) 35.8 1
All 13.1% 42.5 –

Heteroskedasticity-robust standard errors in parentheses, calculated by the delta method.
The difference between the high-wealth and low-wealth underlying marginal utility of income
structural parameters is statistically significant, with a p-value of 0.012. The difference
between the high-wealth and low-wealth underlying discount rate structural parameters is
statistically significant, with a p-value of 0.042.
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Some of our most important results are the annual discount rates in Table 2.25 We find

that the high-wealth households have an annual implicit discount rate of 10.0%. Medium-

wealth households have a somewhat higher rate of 13.9%. And low-wealth households have

an even higher rate of 15.3%. All three of these estimates are significant, and the difference

between the low-wealth and high-wealth, as well as medium-wealth and high-wealth groups,

are also significant (as can be seen in the coefficients αlow and αmed in Appendix Table G.1).

The average rate for all groups is 13.1%. This finding is close to the average finding in de

Groote and Verboven (2019) of 15%, estimated based on households in Belgium.

The final two columns in Table 2 provide a way to understand the implications of the

implicit discount rate results. Recall from our model that θ converts a $1 payoff from offset

electricity costs each period over the panel lifespan (100 quarters) into a present value. This

calculation takes into account the implicit discount rate, rate of panel depreciation, and

expected electricity price increases. The difference between the high- and low-wealth groups

is substantial, with high-wealth households valuing the $1 flow payoff at $52.6, while the

low-wealth households value it at only $35.8. The ratio of the value of the two is 1.5. This

level of implicit discount rates and the remarkable difference in how consumers of different

wealth groups value the future payoffs from solar have very important implications for our

counterfactual results.

In Appendix H, we include the results from a range of robustness checks. These include

allowing for rebound effects, alternative trends for power purchase rates for leases, alternative

scaling and values for trends in solar and electricity prices, alternative assumptions for T ,

inclusion of race covariates, using a finite time horizon, and using of realizations for V ′ and

Pr′ instead of the predicted values. We consistently find that the stream of benefits from

offset grid consumption is valued roughly 50% more by high wealth households relative to

low wealth households across these specifications.

6.2 Price Elasticity of Demand

The implicit discount rate and the price elasticity of demand are two of the most important

parameters driving our counterfactuals. Our model is flexible enough to yield price elasticities

of demand that vary by wealth group. We calculate the elasticities by simulating adoption

(incorporating resizing) under a 1% reduction of the system cost over the sample period.

Table 3 reports the own-price elasticities of demand by wealth group and lease type.

The price elasticities range between -0.4 and -2.8. What is most notable is that the

elasticities of demand for high-wealth households are much smaller than for low-wealth

25We calculate these by transforming the structural coefficients, e.g., for high-wealth households Φ(ρi)
−4−1,

since the time step is a quarter.
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Table 3: Price Elasticity of Demand

Wealth Rate All Purchase Lease

High 10.0% -0.8 -0.4 -1.6
Med 13.9% -1.9 -1.3 -2.4
Low 15.3% -2.6 -2.4 -2.8

All 13.1% -1.7 -1.1 -2.3

households. These price elasticities should be interpreted as the response over a quarter to

a long-lasting price change, affecting both current and future prices. Thus, they would be

expected to be slightly larger (in absolute value) than estimates in the existing reduced-form

literature. Indeed, this is the case. Other studies, using different time frames and often other

settings, tend to find price elasticities in the range of -0.65 to -1.2 (Hughes and Podolefsky,

2015; Gillingham et al., 2016).

6.3 Model Fit

Although examining price elasticities is one way to gauge the reasonableness of the model, we

also examine the model fit. We predict adoption probabilities for each household, time period,

consumption bin, and type, and aggregate the probability of adopting within the study time

period by wealth level. We can then compare our model-predicted aggregate probabilities

to the data. Overall, we find that our model fits the data well, with total installations only

overpredicted by 2.5%. The gap between predicted and data is slightly larger for purchased

systems than leased systems, but remains relatively small. For more detail, see Appendix G.

6.4 Why are Implicit Discount Rates Heterogeneous?

In Section 2, we discussed possible explanations for heterogeneous implicit discount rates across

wealth groups besides differences in the pure rate of time preference, including differences in

lending and borrowing costs, the marginal propensity to consume, beliefs, and risk aversion.

We account for possible differences in risk aversion with heterogeneous marginal utility terms,

and differences in the marginal propensity to consume are less likely in our setting. This

section presents evidence on borrowing costs and beliefs.

Borrowing costs are particularly policy-relevant because if borrowing costs are the primary

mechanism for heterogeneity in implicit discount rates across wealth groups, policymakers

may be more interested in credit-related policies rather than subsidies. Recall that we include

the number of credit lines the consumer has access to in our primary specification as a control
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for borrowing costs. To more thoroughly test whether the differences in implicit discount

rates are explained by borrowing costs, we leverage the individual-level Experian credit score

data (see Appendix I.1 for details). We allow the household discount factor to be given by:

ρi = Φ(ρ0 + αmed1{wealthi=med}+ αlow1{wealthi=low}

+ αmed,PC1{wealthi=med}1{crediti=poor}+ αlow,PC1{wealthi=low}1{crediti = poor}),

in which we use a dummy to indicate households with poor credit (near-prime or sub-prime).26

We group all high-wealth households together since there are so few with poor credit scores.

The estimated discount rates for households with good credit scores are 12.5%, 12.9%,

and 18.7% across low-, medium-, and high-wealth consumers. Further, the ratio of θ for high-

to low-wealth consumers is virtually unchanged from our main results at 1.5 (see Table I.1).

However, while credit scores (and thus borrowing costs) do not explain the differences in

implicit discount rates across wealth bins for households with good credit, they can exacerbate

the difference for households with poor credit; for poor credit households, we find discount

rates of 21.9% for medium wealth and 46.6% for low wealth. Thus, borrowing costs are still

important in households’ valuation of the future stream of benefits of adopting solar even if

they cannot alone explain heterogeneous discount rates across wealth groups.27

There are several key expectations that consumers have to make in the solar purchase

decision, including over future electricity rates for their initial consumption and climate zone

(ζ), panel degradation (λ), and panel life (T ). Under the common assumption of common

rational expectations, consumer beliefs would play no role. But systematically different

expectations by high-wealth and low-wealth households could influence the implicit discount

rates. Fortunately, it does not matter for our counterfactuals or for policymakers whether

the implicit discount rates are from the pure rate of time preference or different beliefs. But

it is worth a discussion and some analysis to clarify our understanding of mechanisms.

We view systematically different beliefs for ζ across wealth groups as unlikely for two

reasons. First, our sample consists of homeowners in California, who all have at least a reason-

able degree of wealth, so differences in electricity rate expectations driven by systematically

different views on utility pricing seem unlikely. Second, we estimate consumption-specific

measures of ζ, yet the distribution of electricity consumption is not particularly different

26For households with missing credit data, we allow for similar flexible interactions between an indicator
for missing data and wealth.

27It is notable that when including these additional credit score variables in the discount rate specification,
we no longer find a difference in the marginal utility of income across wealth bins. Thus, in the main
specification, it appears that heterogeneous marginal utilities of income are absorbing the differences in
borrowing costs.
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across wealth groups (see Figure A.1b), greatly reducing the likelihood of differing expecta-

tions over wealth. Similarly, systematic biases that differ across wealth groups in the panel

depreciation rate λ are highly unlikely as these are engineering estimates that come straight

from the installers and are easily found online.

There are two possible reasons to think there might be heterogeneity in the T across

wealth groups. The first is that consumers in different wealth groups could have different

expectations about panel lifespans. Given that panels tend to have 25-year warranties and

that contractors give the same information about panel lifespans to all consumers, one would

expect all consumers to have the same expectations for how long panels will continue to

produce electricity. The second possible reason is that some consumers may have different

beliefs about how long they will live in their home than others. For example, households

with lower wealth may believe they are more likely to move before the 25-year lifespan of the

solar panels. In this case, it matters how the residual value of solar panels is capitalized into

the expected transaction price.

Fortunately, we have some evidence to draw upon. Bollinger et al. (2025) surveys 3,305

respondents nationwide who either are considering solar panels or EVs (or have already

made the purchase), and asks exactly this question. Of these, 1,673 are homeowners, all

but one of which respond to the income question. Figure I.1 from this study shows that

the fraction of homeowners that plan on staying in their home more than 20 years is nearly

identical across income groups, and in general the expectations look similar across income

groups (see Appendix I.2). Note that California homeowners are unlikely to be in the lowest

income category due to the high cost of homes in the state. There is also evidence on the

capitalization of the residual value of solar into home transaction prices. There is a literature

indicating that capitalization for solar is very high, and in many cases near 100% (Dastrup

et al., 2012; Qiu et al., 2017; Gillingham and Watten, 2024). Given that capitalization of

housing attributes–including swimming pools, fireplaces, garages, and air conditioning–does

not seem to vary with wealth (Sirmans et al., 2006), we view it unlikely that beliefs about

capitalization of solar panels are going to be substantively different across wealth.28 Indeed,

solar installers generally tell all of their customers that they should expect their home values

to rise along with the value of the system. All of this evidence suggests that different beliefs

across wealth groups is less likely to be a major factor in explaining the heterogeneity in

implicit discount rates.

28Gillingham and Watten (2024) present evidence that low-income households may have lower capitalization
of the residual value of a solar system in the home transaction price than high income households. However,
this assumes the same discount rate in calculating the net present value as high-income households and if the
discount rate for low-income is higher, then capitalization could be very similar.
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We further explore systematically different beliefs by performing a bounding exercise.

Specifically, we calculate equivalent values of each of the three parameters {ζ, λ, T} that

would result in our estimated θ but constant ρ over wealth groups.29 For example, for ζ,

we take estimates of the quarterly discount factor ρ = {0.976, 0.968, 0.965} and using (4),

we solve for the value of ζ̃ such that (1 + ζ̃)(1 − λ)ρlow = (1 + ζ)(1 − λ)ρhigh. While our

estimated ζ implies an annual electricity rate increase of 2.7%, the ζ̃ required to equate

the low-wealth and high-wealth implicit discount rates would be -2.0%, which is clearly

unreasonable. An equivalent exercise for λ̃ would require that low-wealth households believe

that panel generation would decline 5.6% per year, a factor of 7.03 times the engineering

estimate of 0.8%. The same exercise for T̃ yields the result that low-wealth households would

have to expect an effective panel lifetime T̃ = 12.6 to fully explain the differences in implicit

discount rates, which is roughly half of the 25-year warranty for solar systems. This seems

unlikely, as it would require low-wealth households to have dramatically shorter expectations

of T than high-wealth households or beliefs of much lower capitalization, neither of which is

supported by the evidence available. Thus, we cannot entirely rule out that different beliefs

across wealth groups contribute in some way to the heterogeneity in implicit discount rates,

but the evidence suggests that different beliefs are not likely to be the primary explanation.

7 Counterfactuals

We explore two counterfactual policies. First, we reduce the compensation for excess solar

generation fed back into the grid. Instead of compensation at the retail rate, as under

standard NEM, we use an estimated levelized avoided cost of energy of $0.062/kWh.30 This

first counterfactual roughly approximates some of the changes under California’s NEM 3.0

reform. Second, we again reduce the compensation rate for excess solar generation, but

accompany it with an upfront subsidy. The upfront subsidy is chosen to keep the total

capacity of solar installed roughly the same in the counterfactual as in the observed data.

This counterfactual uncovers the potential efficiency and equity improvements possible from

changing the policy, while avoiding any political fallout (and reduced environmental gains)

from diminishing the solar industry.

29That the consumer is correct in expectation over future values of prices is a common assumption in the
literature even when identifying heterogeneous preferences. For instance, Gowrisankaran and Rysman (2012)
estimate a similar linear autoregressive specification for camcorder prices and incorporate it into a model
with persistent consumer heterogeneity. See also Bayer et al. (2016); Hornbeck et al. (2024).

30This estimate is from a typical solar generation profile in the California Public Utilities Commission
Avoided Cost Calculator derived by E3 Consulting (E3, 2022)

28



Before turning to the results, it is worth a brief discussion of how we estimate the outcomes

in our counterfactuals. Since state transitions may change under our counterfactuals, we

follow similar assumptions as in our parameter estimation, allowing consumers to expect a

deterministic evolution of the state variables with a short-run prediction error (see Appendix

J). We assume that the policy changes are expected to remain in place for the future. We

use the optimal solar system sizing model to incorporate how changes in policy affect system

sizing. The baseline that we compare our policy counterfactuals to is the observed data.

7.1 Lowering Compensation for Exported Solar

Lowering the compensation for excess solar electricity fed into the grid to $0.062/kWh leads

to a leftward shift of the demand curve for solar installations because the benefits of solar are

reduced. One challenge in running this counterfactual is that the change in the net present

value of a given system depends on how much solar electricity is consumed by the household

when the solar generation occurs (and thus offsets buying electricity at the retail rate) versus

being exported to the grid. For example, on one extreme, one could imagine a household

that uses all of the electricity generated by the solar system, so that none of the electricity is

fed into the grid. For this household, a reform that lowered the compensation rate for excess

electricity would not change the net present value of adopting solar. On the other extreme, a

household that fed nearly all of the electricity into the grid would have a much lower solar net

present value after the reform. We report our results for several potential “splits” between

solar generation that offsets consumption and solar generation that is exported. Specifically,

we report {0, 30, 50, 70, 99} percent exported. For each split, we allow for re-sizing, then

predict adoption conditional on the resized flow benefits and up-front costs.

Table 4: Percent Change of Solar Installations in Counterfactual Relative to Baseline

% solar exported

Wealth 0 30 50 70 99

High 0 -6 -14 -24 -36
Med 0 -8 -16 -24 -31
Low 0 -7 -14 -21 -29

All 0 -7 -15 -23 -33

Table 4 presents the first results of the counterfactual analysis, showing the percent change

in solar adoption for each of the three wealth groups and the entire sample. Each row shows

the percent change in adoptions in the counterfactual relative to the baseline and the columns
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indicate the percent of solar generation exported to the grid. In the trivial case where none

of the solar is exported to the grid, the counterfactual is identical to the baseline.

When 99% of solar generation is exported to the grid (last column in Table 4), we observe

that adoption falls by 36% among high-wealth households and by only 29% among low-wealth

households (Table 4). The larger decline for high-wealth households reflects their greater

sensitivity to reduced NEM benefits, driven by lower implicit discount rates and higher

marginal electricity prices under the tiered rate structure. High-wealth households tend to

consume more electricity and thus tend to be on a higher electricity rate tier, so their bill

offset under current NEM policy is larger.

As we reduce the percent export from 99%, the tiered rate structure for electricity prices

becomes even more important. For example, With 50% of the electricity consumed by the

household, more higher-wealth households are going to be interested in solar under the

counterfactual because they tend to consume more electricity at a higher electricity rate

tier. This force explains why the high-wealth group has the same percent reduction in solar

installations as the low-wealth group, at 14%. Indeed, when 30% of solar is exported, this

second force dominates and the percent reduction for high-wealth households is lower than

for low-wealth households.

If solar systems are sized to fully or nearly fully offset annual electricity consumption,

we would anticipate that approximately 30-50% of electricity being exported for a typical

household whose members generally leave the home for work during the day. The actual

amount is unobservable and there is seasonality, given that most solar systems overproduce

relative to consumption during the summer and underproduce in the winter.

7.2 Replacing NEM Compensation with Upfront Subsidy

Our second counterfactual effectively swaps a flow payoff for an upfront subsidy. There are

two common variations in the design of upfront solar subsidies. One approach is to provide an

incentive based on the system size (a per-watt capacity subsidy). Under a capacity subsidy,

households installing larger systems–who are often wealthier households–would receive greater

subsidies than those installing smaller systems. Alternatively, the government could provide

a fixed upfront subsidy that is the same for all solar consumers. Fixed upfront subsidies

are less common, but they might have preferable distributional consequences. We explore a

per-watt capacity subsidy and a split policy in which 50% of the upfront subsidy is per-watt

and 50% is a fixed upfront subsidy that everyone receives.

We calculate the subsidy required to ensure that the total solar capacity installed (in

MW) remains roughly equal to the baseline capacity under the split policy. One reason for
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ensuring that solar capacity remains the same might be political constraints. For each solar

consumer, we estimate the additional subsidy cost to the government and the savings to the

utility. Specifically, we calculate the change in the net present value from reducing the NEM

compensation and then calculate the net present value of the utility savings (using a 6%

implicit discount rate for installers, aligned with our lease model).

We find that roughly half of the savings from the reduced NEM compensation would

be sufficient to hold the total solar capacity installed constant if it is allocated to upfront

subsidies, using both a 30% and 50% grid export rate. If 30% of generation is exported to

the grid, then the subsidies required are $703 per installation and $0.13 per watt. For 50%

of generation exported, the subsidies are $1,923 and $0.38 per watt.31 Table 5 presents the

counterfactual results for each wealth group and for the total population.

Table 5: Percent Change of Solar Installations and Capacity in Second Counterfactual
Relative to Baseline

No subsidy Per-W Per-install and per-W

Wealth Adopted Capacity Adopted Capacity Adopted Capacity

30% exported to grid
High -6 -9 -2 -3 -2 -4
Med -8 -10 1 0 1 -1
Low -7 -11 3 2 5 2

All -7 -10 1 0 1 -1

50% exported to grid
High -14 -24 -3 -4 -3 -9
Med -16 -25 7 7 7 2
Low -14 -25 13 13 21 12

All -15 -24 5 4 7 0

“Adopted” refers to number of adoptions. “Capacity” refers to kW installed.

In Table 5, we present the percent change from the baseline in solar installations and

solar capacity for each of the three scenarios: no subsidy (repeating the Table 4 results for

reference), savings from reducing NEM compensation used for an upfront capacity-based

per-watt upfront subsidy, andsavings used for the split capacity and per-installation subsidy.

The total aggregate value of the upfront subsidy is identical between the capacity subsidy

and the split subsidy. The capacity-based subsidy is $0.26/W for the 30% export rate case

and $0.76/W for the 50% export case.

31The fraction rebated is approximately 50% of the revenues no longer used for NEM, but varies somewhat
due to the resizing that occurs in response to different subsidy levels.
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Although the subsidies were designed to keep the total solar capacity installed roughly

the same, we find that the upfront subsidy leads to more solar installations by low-wealth

and medium-wealth households than in the baseline, especially at the 50% export rate. A key

reason for this finding is the heterogeneity in implicit discount rates, as the upfront subsidies

are not discounted while the current NEM policy benefits would be. The heterogeneity in

the marginal utility of income (see Table 2) also contributes. Medium-wealth households

value upfront payments half as much as low-wealth households, and high-wealth households

value upfront payments 15% as much. The increase in adoptions by low-wealth households

is even more notable under the split subsidy. Low-wealth households tend to have smaller

systems, so a per-installation subsidy will provide greater benefits to these households than a

capacity-based subsidy.

Another notable finding in Table 5 is a difference between the change in the number

of installations and solar capacity across scenarios. For example, in the 50% export case,

low-wealth households observe a 21% increase in installations but only a 12% increase in

solar capacity. The explanation here is that, even after optimal resizing, solar system sizes

for low-wealth households are substantially smaller than for higher-wealth households. This

finding highlights the value of modeling system sizes in our analysis.

7.3 Welfare and Marginal Value of Public Funds

Changes in welfare are crucial inputs to the policy process, but are complicated in the

electricity market. There are distortions from raising revenue either through taxes or by

increasing electricity rates. Further, the policy changes affecting utility revenues can lead to

adjustments to the electricity rate (Hahn and Metcalfe, 2021), including changes to the entire

tiered rate structure. Given the difficulty in ascertaining how such changes might occur, our

analysis holds the electricity rate structure fixed (future work could relax this by estimating

a new equilibrium). Thus, our analysis should be seen as short-run or medium-run, prior to

any new rate cases that would revise electricity rates.

In Table 6, we report changes in welfare-relevant outcomes for each wealth group and for

the entire sample for a 50% export rate (see Table K.3 for a 30% rate). The numbers for

each wealth group are for the outcomes attributed to the solar adoption decisions of each of

the wealth groups, rather than the welfare-relevant effects on that group, as in a standard

distributional analysis. In the second column, we calculate the gross post-subsidy changes

in consumer surplus by integrating under each consumers’ new demand curve, inclusive of

the subsidies and accounting for the possibility of system resizing. The change in the excess

solar generation compensation rate shifts each household’s demand curve for adopting solar
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to the left, and the size of the shift depends on their discount rate, their irradiance curve,

their electricity consumption, and the initial tiered pricing structure. We carefully account

for heterogeneity by calculating the welfare effect for each household (integrating over the

unobserved consumption state with the estimated weights) and then aggregating, rather than

assuming a representative consumer.

Table 6: Changes in Welfare-Relevant Outcomes (Millions $; % Change)

Wealth ∆ Consumer ∆ Installer ∆ Utility ∆ Avoided ∆ Government
Surplus Surplus Surplus Damages Expenditures

Lowered Compensation for Exported Solar
High -$14.4 (-63%) -$9.1 (-31%) $22.1 (66%) -$2.4 (-31%) -$4.7 (-31%)
Med -$9.0 (-38%) -$11.2 (-32%) $25.7 (68%) -$3.0 (-32%) -$5.7 (-32%)
Low -$2.9 (-26%) -$5.7 (-31%) $12.6 (72%) -$1.6 (-33%) -$2.9 (-31%)

All -$26.3 (-46%) -$26.1 (-31%) $60.4 (68%) -$7.0 (-32%) -$13.3 (-31%)

Lowered Compensation for Exported Solar plus Split Subsidy
High -$10.4 (-39%) -$6.2 (-19%) $15.9 (40%) -$0.9 (-10%) $6.6 (25%)
Med -$2.7 (-9%) -$2.9 (-7%) $13.3 (27%) $0.2 (2%) $11.6 (33%)
Low $1.5 (10%) $1.0 (4%) $4.3 (17%) $0.8 (11%) $8.4 (41%)

All -$11.5 (-16%) -$8.1 (-8%) $33.5 (29%) $0.1 (0%) $26.6 (32%)

All estimates assume 50% export to grid.

Next, we calculate the changes in pre-tax installer surplus (column three). Consistent

with our demand model, in which we model the binary decision to adopt solar versus non

adopt (ignoring the choice of installer), we implicitly assume monopolistic pricing when using

our estimated price elasticities to calculate the optimal markup. That said, our aggregated

elasticity estimate of -1.7 (Table 3) is consistent with the literature and is actually on the

larger size (in magnitude), despite the assumption of monopolistic pricing (using static models,

Gillingham and Tsvetanov (2014) finds an elasticity of -0.65, Pless and Van Benthem (2019)

find an elasticity of -0.85 for purchased systems, and Hughes and Podolefsky (2015) find an

estimate of approximately -1.2). In the fourth column Table 6, we show the changes in the

pre-tax utility surplus (revenues net of avoided cost of generation) from both the changes in

NEM subsidies and the change in solar adoption, integrating again over all households.

In column four, we present the aggregate avoided environmental and health damages

resulting from changes in solar installations using the monetized values of the externalities

in Sexton et al. (2021).32 Finally, we show the change in government expenditures due to

32We use the “dollarization” method from this paper and do not split up the calculation by wealth group
as this is infeasible.
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differences in payouts from the ITC and subsidies. Further details on our calculations can be

found in Appendix K.

We find that lowering the compensation for exported solar to the avoided cost reduces

consumer surplus (in the sample) by $26.3 million, reduces installer surplus by $26.1 million,

increases utility surplus by $60.4 million due to the reduction of bill offsets for net solar

generation, reduces avoided damages by $7.0 million, and reduces government tax credit

expenditures by $13.3 million. The bulk of the impacts are due to the decisions of the

high-wealth group. Under the split subsidy, aggregate consumer surplus declines by -$11.5
million from baseline, but increases for the low-wealth households by $1.5 million. This

demonstrates a clear equity tradeoff. Government outlays increase by $26.6 million, installer

surplus declines by $8.1 million, and utility surplus increases by $33.5 million. Environmental

and health externalities barely change. The key takeaway here is that switching from an

NEM subsidy to an upfront subsidy can maintain the level of the solar market, maintain the

environmental and health benefits, improve the consumer surplus for low-wealth households,

and reduce utility expenditures (which could reduce the cost-shift and potentially also benefit

low-wealth households).33

7.3.1 Marginal Value of Public Funds

One promising approach to gain insight into the overall welfare effects of subsidy coun-

terfactuals without making assumptions about the deadweight loss from raising funds is

to calculate the marginal value of public funds (MVPF) (Finkelstein and Hendren, 2020).

The MVPF is the ratio of the policy beneficiaries’ willingness to pay for a policy to the

government expenditures of the policy. It is a measure of the effectiveness of government

expenditures. The gains to the beneficiaries include the change in consumer and installer

surplus, electric utility expenditures (accounting for taxation, which goes to the government),

plus the externality damages avoided. The government expenditures account for the changes

in the incentive payments shown in Table 6, and also account for changes in tax revenues. A

MVPF of greater than one indicates that the government expenditure is less than willingness

to pay, providing an indication that the policy is net beneficial.

In our MVPF calculations, we focus on the MVPF of our second counterfactual relative

to our first to provide evidence on the marginal social value of using some of the savings from

reducing NEM compensation for additional subsidies. We calculate the MVPF for subsidies

that might be targeted to each wealth group. We follow Hahn et al. (2024) in how we handle

33Recall that our final sample consists of 183,667 households, which represents 3.2% of all owner-occupied
single-family detached homes in California, so the results would have to be scaled up by a factor of 31 to
cover all of the state.
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installer surplus, the electricity markup, and corporate taxes for installers, the electric utility,

and government expenditures, using the same assumptions (a 10% corporate tax rate and the

8% economy-wide markup found by De Loecker et al. (2020)).34 MVPF methods are detailed

in Appendix L.1.

Table 7: Changes in Outcomes (Millions $) and Marginal Value of Public Funds from
Comparing the Two Counterfactual Scenarios. Assumes 50% export to grid.

Wealth Consumer Installer Utility Avoided Government MVPF
Surplus Surplus Surplus Damages Expenditures

High $4.0 $2.5 -$5.5 $1.5 $11.7 0.22
Med $6.3 $7.1 -$10.8 $3.2 $18.0 0.32
Low $4.5 $5.7 -$7.3 $2.3 $11.7 0.45

All $14.8 $15.3 -$23.6 $7.1 $41.4 0.33

Table 7 presents the results of our MVPF calculations for the 50% export to grid

assumption (30% results are in Appendix L.2).35 We observe MVPF values ranging from 0.22

to 0.45, with the lowest values for high-wealth households and the highest for low-wealth

households. These findings show that the willingness-to-pay for the policy is, on average,

only one third of the cost of the policy. The utility surplus, which is distributed across all

utility customers, offsets much of the consumer and installer surplus, so most of the surplus

gains are from the avoided externality damages. We also find that the upfront subsidies

for low-wealth households provide double the benefit than those to high-wealth households.

This results is because high-wealth households are are less price-sensitive than low-wealth

households (recall Table 3) and are more likely to install without the subsidy.

8 Conclusion

In this paper, we use a novel identification strategy that leverages plausibly exogenous

variation in irradiance to identify implicit discount rates used by households in California

in their solar installation decisions. We provide model-free evidence that high-wealth and

34Our calculations would be the same with government-mandated transfers of the post-tax utility savings
back to consumers – pre-tax transfers would lead to small changes in the effect on government revenues.
Another possible transfer mechanism is a small downward adjustment in utility rates, which would have a
secondary effect of reducing installations to some degree since the value of the offset utility bills would be
reduced. We anticipate that the MVPF calculations would not change appreciably.

35Installer surplus, utility surplus, and government expenditures are adjusted in the MVPF calculation to
account for fiscal externalities; consumer surplus and avoided damages are the differences between the top
panel and bottom panel in Table 6.
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medium-wealth households are more responsive to the value of the solar flow payoff obtained

by investing in solar panels than low-wealth households, highlighting the features of the data

that drive our results. We then estimate a structural dynamic model that pins down an

average implicit discount rate for residential solar adopters of 13% and demonstrates clear

heterogeneity in the implicit discount rate by wealth, with high-wealth households making

decisions consistent with a 10% rate and low-wealth households a 15% rate. Our results help

explain disparities in solar adoption rates between low-wealth and high-wealth households.

We also explore why these differences might occur with credit score data. We find that

households with poor credit have higher implicit discount rates, but the same 1.5 ratio of

the high-wealth to low-wealth rates remains even for households with solid credit. This is

important because if borrowing costs are the explanation for the heterogeneity in discount

rates, then attention would turn to credit-related policies instead of subsidies.36 We find

that the best evidence available renders other potential explanations for the heterogeneity in

implicit discount rates less likely, suggesting that differences is the pure rate of time preference

are a more likely explanation.

Our counterfactual results indicate that reducing NEM compensation to the avoided cost

would reduce the size of the solar market substantially. It would reduce installations across all

wealth groups, but would reduce consumer surplus of the high-wealth households much more

than low-wealth households. If roughly half of the savings from reducing NEM compensation

are allocated to an upfront subsidy (half per installation and half per capacity installed), this

would maintain the size of the solar market, reduce government and utility expenditures, and

even lead to an increase in consumer surplus for low-wealth households. In short, by carefully

structuring the upfront incentives, there is the potential to improve equity and reduce any

potential cost-shift. However, such a subsidy, while of higher value to low-wealth households,

would not result in a MVPF of greater than one.

California and many other states are reforming NEM policies to better reflect the actual

value of solar generation, while the federal ITC is in the process of being phased out

shortly. Given these drastic changes to the financial benefits of adopting solar, it is useful

for policymakers to understand how consumers’ valuation of different solar subsidies vary

by household wealth. Many other green durables have similar characteristics with upfront

costs and future fuel savings, and future work may show that our results generalize further.

Our study aims to provide a contribution to the economics literature through well-identified

estimates of the implicit discount rate across wealth groups, insights into the mechanisms,

and guidance to policymakers on the distributional effects of different policy approaches.

36Of course, our findings do not rule out the possibility that policies focused on credit, such as low-interest
loan programs for low-wealth households, could also increase solar uptake.
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Online Appendix

A Data Assembly

A.1 Sample Selection

We assemble the study sample by first identifying zip codes in California that are located within
the Pacific Gas and Electric service territory. We identify the climate zone associated with each zip
code in the Pacific Gas and Electric service territory and extract from the sample home in those zip
codes that lie on a climate zone boundary37. The 28 zip codes contained in the sample are shown in
Figure 1.

Our base dataset of potential solar adopters is the set of all single-family detached non-mobile
home residences that were built before 2014 in the 28 zip codes we identified.

A.2 Google Project Sunroof Matching

We match each household in our data to the nearest Google Project Sunroof record with a greedy
spatial matching algorithm. We drop the 5% of households with the largest distance between the
geocoded home address and the Google Sunroof record. For each matched household, our data
contains the panel-by-panel expected generation. Generation is largely decreasing as panels are
ordered by generation, though contiguity requirements may result in some increases. Figure 2b
shows the previous four randomly selected rooftops’ generation profile.

A.3 Household Consumption Profiles

The PG&E data are anonymized and do not include addresses. They do include the 5-digit zip code,
tariff ID, as well as grid interconnection IDs that identify solar adopters. Thus, for solar adopters,
we observe the annual consumption prior to the installation of solar and can designate the closest
consumption bin for each adopter. For non-adopters, we see only the full distribution of consumption
across the zip code. For each zip code, we remove known adopters and bin all consumption into
five equal-sized consumption bins. We also remove a very small number of households (less than
100) enrolled in an early version of the Electric Vehicle (EV) tariff. In estimation, we will integrate
over the observed empirical distribution of consumption within each zip code (sampling without
replacement).

The study period is 10 quarters, from Q1 2014 through Q2 2016, so we treat consumption as
fixed over the study period. We calculate the mean consumption for each bin within each zip code.
A density plot of zip-level consumption is shown in Figure A.1a. Figure A.1b shows the consumption
levels of adopters and non-adopters by wealth. Across all three weath bins, adopters have higher
consumption on average. As wealth increases from low- to medium, the separation between average
consumption of non-adopters and average consumption of adopters becomes larger, consistent with
lower implicit discount rates and higher sensitivity to the flow of benefits from installing solar

37During the study period, PG&E designated CEC climate zones as “baseline territories”. We use PG&E
published rates by territory, but note that these territories follow the CEC climate zone boundaries.

41



(a) Distribution of zip-level consumption bins
calculated from the full distribution of consump-
tion by zip code. For each zip code, consump-
tion is grouped into one of five bins (1 is lowest
consumption, 5 is highest) and the mean con-
sumption is calculated for each bin. Plot shows
the distribution across zip codes of the five bin’s
mean consumption.

(b) Density of consumption by adopter sta-
tus and wealth. To calculate density of non-
adopters, we assign equal weight to each of the
five consumption bins for the household’s zip
code.

Figure A.1: Consumption Summary Statistics

A.4 PG&E Rates

While all households in the PG&E service territory share the same block pricing steps at any given
time, California Energy Commission (CEC) climate zones vary in the width of a block tier pricing
step – hotter inland zones are allowed more baseline consumption before stepping up to the next
higher marginal rate relative to cooler coastal zip codes. Our sample includes homes in 28 zip codes
that are wholly contained in one of three unique CEC climate zones (PG&E territories S, T, and X).
While all homes initially face the same price per kilowatt-hour for their first unit of consumption,
homes in warmer CEC climate zones will, as consumption increases, face lower retail rates than will
homes in cooler CEC climate zones due to the higher threshold for stepping to the next block tier
price. Average retail price per kilowatt-hour is weakly lower in warmer CEC climate zones with
higher baseline thresholds.

During the study period, baseline thresholds were adjusted once. Thresholds are shown over
time in Figure A.3. The sample contains 34,796 households in zip codes in Territory S, 57,790
households in zip codes in Territory T, and 91,081 households in zip codes in Territory X, for a
total sample size of 183,667 representing approximately 3.2% of all owner-occupied single-family
detached homes in California.

In addition to spatial CEC climate zone variation in block tier step width, retail electricity rates
for each step of block tier pricing vary over time, as shown in Figure A.2. Although rates at lower
consumption levels (Tiers 1 and 2) steadily increased during the study period shown (2014-2016),
higher tier prices decreased slowly over the same time period. Thus, higher-consumption households
experienced smaller total increases in the average cost per kilowatt hour during this time period.
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Figure A.2: Retail Rates. Retail rates by tier over time in dollars per kilowatt-hour.

Figure A.3: Rate tier climate zone thresholds. CEC climate zone thresholds over time
in kilowatt-hours per month. Corresponding rates are shown in Figure A.2
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B Sizing Model

In this section, we describe the optimal sizing decision for solar purchasers. The optimal size of
the system is a function of the system costs (inclusive of upfront subsidies), system generation
(as a function of size), and the price of grid electricity, which depends on a household’s electricity
consumption due to the tiered pricing structure. As a robustness check, we also incorporate the
possibility of a solar rebound that increases electricity consumption after the solar installation
(Oliver et al., 2024) and vary the assumed panel life T .38

Let TC(K) denote the total cost to a household of a solar installation of size K. It is comprised
of the fixed cost, FC and a cost per panel, V , charged by the installer. A per-kWh of solar
capacity rebate subsidy, S can reduce the upfront cost of the panels. The total cost of the
system net of rebates is reduced by a fraction I equal to the investment tax credit.39 Thus,
TC(K) = (K · (V − S) + FC) (1− I) = K · C + F. We define C = (V − S)(1− I) as the cost per
kilowatt of solar capacity faced by consumers (i.e., the post-subsidy variable cost of adding further
panels) and F = FC(1− I) as the fixed cost faced by consumers.

If the levelized cost of electricity generation from the marginal unit capacity is less than or equal
to the lowest electricity rate, p0, we assume that the household that purchases solar will optimally
install a system large enough to exactly offset all consumption.40 The household installs a minimum
installation of 5 panels (1.25 kW) if the levelized cost is greater than the highest grid electricity
rate, where 5 is the smallest observed installation size in the data. And if levelized costs of the
marginal solar capacity are less than the highest grid electricity rate but higher than the lowest grid
electricity rate, then the household optimally sizes the solar array to offset just the fraction of grid
electricity consumed at the highest rate.

Leased systems in the data are much more likely to be sized equal to current consumption, and
indeed the firm incentives are such that installers would prefer recommending the largest system
size up to fully offset consumption. Thus, we size purchased systems according to the optimal sizing
model, and leased systems according to full offset, which minimizes the absolute error in sizing. Fit
statistics are shown in Appendix B.

Let Q(K) be the quarterly electricity generated by a new solar system of size (installation
capacity) K (in units of kWh), and let λ be the quarterly depreciation of panels each quarter. We
define Q∗ as the annual electricity produced by a new system of optimal size K∗. Let q(K) = dQ

dK
be the marginal generation at size K, i.e., the electricity produced by an incremental kilowatt of
capacity. Following our descriptive evidence, we assume q(K) is weakly decreasing in K because
solar panels are installed first on the best (i.e., highest irradiance) ares of a rooftop. Thus, q(K) ≥ 0

and dq(K)
dK ≤ 0. Let the lifetime of the solar panel be given by T quarters.

We define a household’s initial grid consumption as Q0, such that for an installations producing
Q kW of electricity with Q(K) < Q0, the remaining grid consumption is Q0 −Q(K). The interior
solution to the sizing problem equates the present value of the lifetime stream of offset utility

38For our main results we do not include a solar rebound due to the fact that our model fit is better without
including the rebound effect. We find results are robust to shorter panel life assumptions, but the overall
model fit is better under T = 100 (25 years), the industry standard.

39We assume that all homeowners have sufficient tax liabilities to qualify for the 30% tax credit offered on
solar during this period.

40Excess generation under NEM policies not credited against a month with net withdrawal is compensated
at a negligible level after 12 months.
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payments that results from an additional unit of capacity to the cost of that capacity. :

C(K) =
T∑
t=1

(
(1 + ζ)(1− λ)

1 + r

)t−1

p(Q0 −Q(K))q(K), (13)

in which p(Q0−Q(K)) is the quarterly cost of the monthly marginal unit of electricity consumption,
r is the quarterly discount rate used for sizing, and ζ is the expected increase in real electricity
costs.41

We define:

c(K) =
C(K)(∑T

t=1

(
(1+ζ)(1−λ)

1+r

)t−1
q(K)

) , (14)

which is effectively an average, discounted price of solar electricity that consumers compare to the
price of grid electricity, p(Q0 −Q(K)), which accounts for the expected increases in both solar and
grid prices over time.

Because q is decreasing in K and p(Q0 −Q(K)) is decreasing in K with constant and increasing
block rate prices, there will be a unique solution to the first order condition (if any). With increasing
block prices, the first units of displaced grid electricity bear the highest marginal costs, and marginal
costs of displaced electricity decline discretely as solar capacity increases.42 The optimal size is
a function of upfront incentives and the feed-in-tariff rate, is increasing in q, p, S, and I, and is
decreasing in r and V .43

Because of the tiered nature of grid prices, the optimal sizing function is not always an interior
solution; it is a piece-wise function defined according to the number of tiers in the tariff structure.
We illustrate this in the context of a tariff with two distinct tiers of volumetric charges. We abstract
from consideration of fixed charges because we assume no households prefer to disconnect from the
grid. Let τ be the monthly grid consumption threshold at which rates change from p0 to p1 for
p0 < p1, and let q0 denote monthly household consumption.

The marginal price of grid electricity p depends upon the residual grid demand, i.e., consumption
net of solar generation, such that:

p =


0 Q0 −Q ≤ 0

p0 0 < Q0 −Q < τ

NSOp1 Q0 −Q ≥ τ

.

We define the minimum size installation considered as K = 1.25 kW. The piece-wise-defined
solution to the optimal sizing problem for increasing block rates and a household consuming at the

41We follow de Groote and Verboven (2019) by using a constant and deterministic value for ζ, which
we estimate using an AR(1) model with fixed effects. This can also be interpreted as assuming rational
expectations, discussed further in Section 5.2.

42For decreasing block prices, the opposite is true, and the interior optimum may not be unique.
43For the sizing model, we use the Google Sunroof default rate of 4%. This rate is considerably lower than

the household rates we estimate. However, the optimal sizing decision is generally not made by consumers
alone, but rather by the installation contractor who presents the cost and expected payoff when generating a
quote for homeowner consideration. A lower discount rate tends to increase the savings relative to up-front
costs, which favors the installer using the lowest reasonable rate. Optimal sizing also must assume an expected
rate of increase in electricity prices, which we estimate from the data, as described in Appendix D and apply
to the sizing decision.
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highest rate is defined as:

K∗ =



K c(0) > p1

q−1

(
C∑T

t=1

(
(1+ζ)(1−λ)

1+r

)t
p1

)
c(0) ≤ p1, c(Q0 − τ) ≥ p1

Q−1(Q0 − τ) p0 ≤ c(Q0 − τ) < p1

q−1

(
C∑T

t=1

(
(1+ζ)(1−λ)

1+r

)t
p0

)
c(Q− τ) < p0, c(Q0) ≥ p0

Q−1(Q0) c(Q0) ≤ p0

.

Figure B.1 depicts these cases, moving in order from the top curve to the bottom, for given
alternative q′s that define c. The weakly decreasing step function (indicated in red) is the levelized
cost of the marginal unit of grid electricity as a function of grid consumption, and the intersection
points with each curve indicates the generation from an optimally size installation. Solar generation
q(K) is increasing left to right, and remaining grid consumption is increasing right to left.

$/kWh

q generated from an installation q(K)

0.0625

0.125

0.1875

0.25

0.3125
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0.4375

0.5

Figure B.1: Optimal sizing. Optimal sizing of solar PV arrays is depicted as a function
of alternative modeled q′ functions, i.e., the electricity generation of marginal units of solar
capacity. Depicted are the costs per kWh for alternative q′s and a tariff with two tiers of
volumetric charges. Grid consumption increases from right to left. Solar capacity increases
left to right.

Figure B.2 shows the fit of the optimal sizing model fit over purchased (left) and leased (right)
systems, which use the two different assumptions. For purchasers, we use the optimal sizing model,
and for leasors, we assume full offset. For non-adopters, we observe only the zip-level distribution
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Figure B.2: Sizing model accuracy. Density plot of Google Sunroof-method actual-
predicted installed system capacity for (orange) leased systems and (blue) purchased systems.

Table B.1: Optimal sizing model fit by type. This table reports the difference between
the predicted and actual observed installations. Positive numbers indicate sizing greater
than observed. Does not include reported installations with greater than 44 panels (95th
percentile).

Mean Sizing Error Mean Absolute Sizing Error

Type count panels % count panels %

Purchaser 2.01 10% 5.72 29%
Leaser 1.19 6% 4.97 24%
All 1.64 8% 5.38 27%

of consumption, and thus size each household conditional on consumption at one of five zip-level
consumption bins. In Figure B.3, we graphically present the sizing model fit using average annual
consumption (left) and the same sizing model fit using the closest consumption bin level for the
adopting household’s zip code. The horizontal striation on the right is due to discretization to the
nearest consumption bin. The right panel, despite not using actual consumption, provides a close
fit to observed installation sizes, despite the discretization.

Table B shows a low average error in sizing expressed in number of panels. The average error of
1-2 panels is 5-10% of the average installation size (20 panels). This is consistent with installers
using similar tools (electricity bills and roof profiles) and assumptions to size a system.

Our preferred sizing model does not account for rebound effects. As a robustness check, we
allow for rebound effect, which may either increase the amount for grid consumption, or it may lead
to larger panel sizes. For consumers not sizing their array to offset full consumption, any rebound
will be through increased grid consumption, if the marginal cost of electricity is reduced due to the
solar installation by placing the household on a lower rate tier. For consumers sizing their array to
offset full consumption, the levelized cost of added solar generation will be weakly less than the
cost of grid electricity, and there will be some scope to increase the size of the installation due to
rebound. To do so, we calculate the consumer surplus using a constant price elasticity of ε = .1
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and allow the system size to increase so long as the cost of the increase is lower than the increased
surplus. Details are in Appendix C.44

Figure B.3: Sizing model accuracy. Density plot of Google Sunroof-method actual-
predicted installed system capacity sized using (orange) actual consumption and (blue) using
assigned closest consumption bin.

C Sizing with Rebound

We account for rebound effects using a constant demand elasticity for electricity, ε. Let:

log(q) = ε log(p) + log

(
q0

(pH)ε

)
, (15)

in which the second term is an intercept that sets observed pre-installation consumption to q0 at
the observed pre-installation marginal price of electricity, pH . We can expect demand to increase by
∆q, which is the maximum value of r such that:

r ≤ −ε

(
pH − pL(r)

pH

)
q0, (16)

in which pL is the effective marginal electricity rate with rebound r using the discount rate used to
size the installation:

pL(r) = min
rS

min

p(q0 − q∗ + r − rS),
C/T

q′ (K(q∗ + rS))
(∑T

t=1
1

(1+δ)t

)
 , (17)

in which rS ≤ r is the amount of the rebound electricity generated from increasing the installation
size and q∗ is still defined as the optimal solar generation ignoring rebound. Let ∆qS be the
optimal amount of this rebound solar electricity. For households not offsetting full consumption

44When including rebound with a price elasticity of ε = .1, the mean error for purchasers increases to 16%,
while the mean absolute error increases to 32%. Thus, we use the no-rebound sizing model for our main
estimation due to the high degree of fit and little evidence of the systematic under-sizing that would indicate
sizing for rebound. We report results using ε = .1 in Appendix C.
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with their installation, the entirety of the rebound effect is through higher grid consumption at
the new marginal rate, p(q0 − q∗ +∆q), and equation (16) holds with equality except at a point
in which the rebound pushes the household to the next price tier. For those households offsetting
full consumption prior to rebound, the cheapest increment of additional electricity may be (and
will almost always start with) the levelized marginal rate of additional solar electricity, but as the
installation size increases and the levelized cost or marginal generation increases, it may switch to
additional grid consumption.

For households whose rebound consumption is grid electricity (those who don’t offset their full
consumption), the value of the generated electricity in each period is equal to the offset cost of q∗

plus the added surplus from the rebound effect:

∆SR =

∫ pH

pL

q(p)dp− (pH − pL)q0 +

∫ q0+∆q−∆qS

q0

(pL − p(q − q∗))dq

=

∫ pH

pL

pε
q0

(pH)ε
dp− (pH − pL)q0 +

∫ q0+∆q−∆qS

q0

(pL − p(q − q∗))dq

=

((
1

1 + ε

)(
(pH)1+ε − (pL)

1+ε

(pH)ε

)
− (pH − pL)

)
q0

+

∫ q0+∆q−∆qS

q0

(pL − p(q − q∗))dq. (18)

The first two terms are the additional surplus of consumption when the cost of this electricity is pL.
The third term is equal to zero unless the rebound consumption is at multiple price levels (i.e. at
multiple price tiers), in which case we need to account for the fact that some of the grid rebound
consumption is at a price lower than PL.

Households who currently offset full consumption may consume from the grid, and they may not.
They will also increase the size of their installation, in which case we need to adjust this surplus
term by:

pL(q0 +∆qS)−
(
TC(K(q∗ +∆qS))− TC(K(q∗))

)
. (19)

This term is the levelized value of the solar rebound minus the cost. It is equal to zero if the
discount rate used in sizing is the same as that when making installation decisions. Since most
sizing decisions are heavily influenced by the installer (using a discount rate of 4%), we allow for
these to be different.

As a robustness check, we re-size the optimal sizing model using an elasticity of ε = .1, motivated
by the literature. We apply the rebound only to purchased systems under the assumption that
leased systems are sized to full consumption, as in the main body.

Relative to table B, sizing with rebound over-sizes purchased systems, leading to greater mean
sizing error (16%) and greater mean absolute error (32%). Leased systems are sized to offset full
consumption, and thus have the same error as in table B.

Nevertheless, we re-estimate our preferred specification and calculate the counterfactual-implied
elasticity as in 7. Results are in Appendix H
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Figure C.1: Sizing model with rebound accuracy. Density plot of Google Sunroof-
method actual-predicted installed system capacity sized using (orange) actual consumption
and (blue) using assigned closest consumption bin, both inclusive of rebound.

Figure C.2: Sizing model with rebound accuracy. Density plot of Google Sunroof-
method actual-predicted installed system capacity for (orange) leased systems and (blue)
purchased systems, both inclusive of rebound.

Table C.1: Optimal sizing model fit by type. This table reports the difference between
the predicted and actual observed installations. Positive numbers indicate sizing greater
than observed. Does not include reported installations with greater than 44 panels (95th
percentile).

Mean Sizing Error Mean Absolute Sizing Error

Type count panels % count panels %

Purchaser 3.13 16% 6.21 32%
Leaser 1.19 6% 4.97 24%
All 2.25 11% 5.65 28%
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D Estimation of Electricity and Solar Price Trends

D.1 Cost of Solar Installation

We need an estimate of the cost of adopting solar for all potential adoptions, which may be a function
of installation size, time, and location. To do so, we estimate the fixed and variable (per-watt)
components of price using TTS data for each boundary group and quarter in our sample. We
assume that the fixed price component will vary by boundary group, and that a common variable
price per watt will decline over time at a constant rate η, to be estimated. The decline of panel
prices on a per-watt basis is well-documented in the literature. Heterogeneous fixed costs reflect
relative wealth and cost of labor across the study areas.

We estimate the solar price model on a sample that includes our study period, as well as the
year prior (2013). We deflate costs using the Bureau of Labor Statistics quarterly CPI using the
fourth quarter of 2016 as the base period. Our decomposition of total reported price into fixed costs,
variable costs, and a common η uses the following specification, which we estimate by nonlinear
least squares (NLS):

SystemCostit =
∑
b

κb1b=b(i) + βWSystemWit · eβT (t−t0) + εit, (20)

in which SystemCost is the cost exclusive of subsidies or tax credits, SystemW is the size of the
system, t− t0 is the elapsed time since the beginning of the cost model estimation sample, Q1 of
2013.

Estimated fixed costs range from $998 to $1,622. Per-watt panel estimates start at $5.12 in the
first quarter of 2013, and decline at a rate of e−.014t. A value of βT = −.01403 yields an estimated
quarterly η = 0.986. We use the estimates in table D.1 to predict fixed and variable installation
costs for adopters and non-adopters.
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Table D.1: Cost Model Estimation: Results from estimation of equation 20 using the
sample of all installations in the study area during the study period and the previous year.
Results show boundary group-specific fixed cost intercepts, per-watt costs κ in first quarter
2013, and quarterly rate of decline in per-watt costs, η, estimated as η = 1− βT = .986. All
costs are deflated using BLS CPI-U.

(1)

κA 1622.238
(154.807)

κB 1527.982
(244.818)

κC 1124.275
(185.183)

κD 1119.103
(164.510)

κE 998.059
(283.709)

κF 1212.440
(148.897)

βW 5.122
(0.034)

βT -.014
(0.000)

Num.Obs. 9163
Log.Lik. -89988.246

D.2 Electricity Prices

We use an AR(1) model with fixed effects to estimate the expectation of the rate of increase in
average electricity rates for each consumption bin and in each zipcode’s CEC climate zone, ζb,z,
using deflated quarterly data. To account for CPUC orders requiring that the block-tiered price
system reduce the gap between high- and low-consumers that resulted in a significant one-time
decreases in tiers 3 and 4 and increases in tiers 1 and 2 which took effect in Q3 of 2014, we include
a break term in the AR(1) specification as follows:

avgpricet,bz = ζbzavgpricet−1,bz + ζbbzavgpricet−1,bz1(t = 2014Q3) + εt,bz (21)

Table D.2 shows results from equation 21. ζbz estimates range from 2.67 to 5.62 percent annually
(.66 to 1.37 percent quarterly).
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Table D.2: Electricity Rate Model Estimation: To estimate equation 21, we calculate
the average electricity rate for each quarter from Q1 2012 to Q3 2016, which captures the two
years prior to the study period. We calculate this average rate using annual consumption that
reflects the distribution of consumption in each zipcode and deflate using the BLS CPI-U.
For each level of consumption and CEC climate zone, designated by {S, T,X}, we calculate
the total variable cost portion of the bill and divide by the annual consumption. The unit of
observation is defined by the combinations of zipcode, consumption level, and CEC climate
zone. Consumption bin 5 is the highest quintile of consumption.

(1)

ζ1,S 1.012
(0.003)

ζ2,S 1.012
(0.003)

ζ3,S 1.013
(0.003)

ζ4,S 1.014
(0.003)

ζ5,S 1.007
(0.003)

ζ1,T 1.012
(0.002)

ζ2,T 1.012
(0.002)

ζ3,T 1.014
(0.002)

ζ4,T 1.011
(0.002)

ζ5,T 1.007
(0.002)

ζ1,X 1.012
(0.002)

ζ2,X 1.013
(0.002)

ζ3,X 1.012
(0.002)

ζ4,X 1.010
(0.002)

ζ5,X 1.008
(0.002)

Num.Obs. 3610
R2 0.999
R2 Adj. 0.999
Std.Errors HC Robust
Time step Quarterly
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E Lessor Model

Nearly 45% of adopters during our study period used a third-party “leased” system wherein the
lessor bears all up-front cost to install the rooftop system, and the lessee agrees to pay a price per
unit of consumption during the life of the lease. In terms of up-front costs and benefits over time,
the adoption decision for a lessee is distinctly different from that of a purchaser. Specifically, leasing
has the effect of amortizing the cost of installing over the life of the panels. We are the first in the
literature modeling solar demand to explicitly model the lease option.

For leased systems, the economic value of the lease over its lifespan is:

δl1 = ωθq∗p̄− θppaq∗pppa, (22)

in which we define:

θppa =
T∑

τ=1

((1 + ζppa)(1− λ)ρ)(τ−1) , (23)

and in which pppa is the starting price of solar electricity and ζppa captures the annual change in
the electricity price guaranteed by the PPA, which we set at 0.04 based on industry standards (we
show the results from a robustness check using 0.03 in Appendix H.2).

We assume that the price the installer charges reflects the levelized cost of installing the system:

pppa =
C(K∗) + F

θIq∗
+markup, (24)

in which the θI captures the discounted sum of benefits per kWh using the installer’s implicit

discount rate, set at 6%: θI =
∑T

t=1

(
(1 + ζppa)(1− λ)ρI

)(t−1)
. We also allow for a transfer of

markup to the installer for fronting the installation costs. We parameterize this transfer by letting
κTC denote the profit margin based on the cost of providing the capital for the installation, and κp

a per-kWh markup. We can write (24) as:

pppa = (C(K∗) + F )(1 + κTC)
1

θIq∗
+ κp. (25)

The first multiplicative factor in (25) applies the markup to the installation cost and then divides
by θI , which amortizes the marked-up cost over 25 years at the installer’s implicit discount rate.
Finally, the amortized cost is divided by the per-period generation q∗, plus a per-kWh markup.

By substitution, for leased systems, the economic value of the lease over its lifespan can thus be
written:

δl1 = θq∗p̄− θppaq∗κp − θppa

θI
(1 + κTC)(C(K∗) + F ). (26)

We assume all of the markup is through the κTC , which captures the full resolution of pPPA

and set κTC = 0.7 based on the observed markup reported by a prominent solar leasing company’s
annual reports during our study period;45 correspondingly, we assume κP is equal to zero. These
assumptions together yield prices pppa that are consistent with observed lease terms, approximately

45See https://ir.tesla.com/press-release/solarcity-announces-first-quarter-2014-financial-results,
which states a markup of 50-55%. We assume markup is pre-ITC, and add 15% for the ITC to total 70%
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$0.18-0.19 per kWh (we have tested and found results that are robust to other combinations of κTC

and κPPA that together yield similar total markups).
We can write the value of leasing then as:

vl1 = ω
[
pEL − κlpINV

]
+Xβl. (27)

with κl ≡ θppa

θI
(1+κTC) capturing the relative tradeoff between upfront costs and long-term benefits

of solar when leasing vs. purchasing. Households with κl < 1 get more economic benefit from leasing
and households with κl > 1 get more economic benefit from purchasing.

F Estimation Details

F.1 Likelihood

Each non-adopter household is one of ten possible consumption × type combinations {1, ..., 5} ×
{leaser, purchaser}. We specify weights wibe as the probability that household i consumes in
consumption bin b and is of type e. With weights wibe, we integrate the likelihood function over the
unobserved heterogeneity. Restating Equation 12:

L =
∏
i

∑
b

wib

∑
e

wie|b
∏
t

[Preibt]
yit [1− Preibt]

(1−yit)

which requires evaluating ten conditional likelihoods per observation of household i and time t.
We posit the weights wibe as wib × wie, where the following adding up constraints apply:

∑2
e′=1wie′ = 1∑5
b′=1wib′ = 1∑
i∈z wib =

Nz
5 (28)

The first two constraints require that each household i have weights that sum across consumption
bin b and type e to equal 1. The constraint in 28 requires that, within a zipcode z, the weights
must sum to 1/5th of the number of households in the sample for that zipcode (due to the use of
quintiles). This guarantees that the moments of the consumption distribution match the empirical
distribution. Type e weights have no analogous restriction, only that they sum to unity.

The constraint in Equation 28 makes wibe dependent on wjbe for any i ∈ z, j ∈ z. Methods of
calculating these weights such as those in Arcidiacono and Miller (2011) are not appropriate for
dependent weights, and an alternative is employed here. To account for dependence, we integrate
over randomly drawn allocations of b that comport with the empirical distribution.

1. Draw R = 1000 random allocations of b that place 1
5 of the households into each bin,

guaranteeing that b(r), the rth allocation, satisfies the constraint in 28 for each allocation r

2. Evaluate the conditional likelihood for every {b, e} combination for every household i and
time t, then taking the likelihood as the product over t, calling this Libe = ΠtLibet

3. Calculate wie|b, the type-weight, for each Libe as
Lie|b

Lie|b+Lie′|b
, following Arcidiacono and Miller

(2011)
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4. Calculate Lib as the wie|b-weighted sum of Libe

5. Turning to the b weights, for each r, calculate the likelihood of observing r conditional on the
parameters and wie|b. To do so, take the product of Lib(r) where Lib(r) is the likelihood for
household i conditional on being in the bin drawn in allocation r. Formally, Lr = ΠiLib(r)

6. Calculate allocation weights w
(r)
z = Lr∑

r Lr

7. Calculate Lz =
∑

r w
(r)
z Lr

8. Log-likelihod L =
∑

z log(Lz)

Allocations r where households are better allocated to consumption bins b that better explain
the observed outcome are weighted higher than allocations that poorly explain the observed outcome.
All weights sum to 1 within household i, and all weights satisfy Equation (28) by definition.

F.2 Conditional Choice Probabilities

In estimation we utilize the state transition estimates shown in Appendix D. The final component
of equation (12) is the conditional choice probability (CCP), which is the predicted probabilities
of adopting in the next period. We again follow Arcidiacono and Miller (2011) and use a flexible
logit to estimate the probability of adopting for household h at time t.46 Weights wibe are used in
the flexible logit and a separate probability of adopting is estimated for leasers and purchasers. In
estimation, the next-period probability of adopting Pre

′
ibe is updated in a third step using updates

of wibe to re-weight the logit estimation and following the update of the weights.
The flexible logit is specified using all interactions of square footage, length of residence, voter

affiliation, presence of children, race, quarterly savings q∗p̄, net system cost C(K∗), consumption
bin b, and a second degree polynomial in time. We also include a 3rd degree polynomial in time
and boundary-zone fixed effects. The CCP’s (predicted probabilities of adopting in the next period)
are generated by advancing the time by 1 period (including advancing p̄ by ζ and C(K∗) by η) and
predicting the logit response. As a robustness check, we also generate CCP’s using the next-period
state of {p̄, C(K∗)} (see Appendix H.7).

F.3 Estimation Transformations

For estimation, σ is estimated using an exponential transformation eσ to preserve positive variance.
The parameters for the marginal utility of income are transformed using

eω0+ωmed1(wealthi=med)+ωlow1(wealthi=low).

This ensures positive marginal utility of income, but does not restrict results to be monotonic or
decreasing in wealth. The parameters of ρi, the household discount factor, are estimated with a
Normal cdf transformation:

ρi = Φ(ρ0 + αmed1{wealthi=med}+ αlow1{wealthi=low}).

Similar functional forms are used when credit data is incorporated into marginal utility of income
and ρi (see Appendix I.1). All dollar amounts are scaled to be in thousands of dollars.

46A bin estimator would be feasible, but components of Equation 9 and the leaser analogue are continuous
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G Structural Parameter Results

The full set of results are shown in Table G.1. In addition to the results discussed in the main text,
we find that having one or more available lines of credit is positive and significant, but the linear
term on additional lines of credit is positive but indistinguishable from zero. Length of residence
and the number of children are negative but insignificant. While previous literature has indicated
these demographics correlate with adoption, these other papers did not condiiton on the economic
value of adopting solar.47 We condition on the house being listed as owner-occupied in the Corelogic
data, but not all of these are coded as owner-occupied in InfoUSA; the indicator for being listed
as non-owner-occupied in the InfoUSA data has a large and significant negative intercept. Square
footage is positive in the linear term and close to zero in the quadratic, while 2+ stories is negative
indicating single-story homes receive more utility from adopting relative to equal-sized two-story
homes, possibly due to greater roof area for optimal solar panel siting.

The γ terms capture differential effects across boundary zones across wealth and type, which is
of particular concern if solar installers use wealth for lead generation or targeting. Intercept shifts
for consumption bins show a U-shaped form: the lowest consumption bin, ϕbin1 is closest to the
omitted category, bin 5, while ϕbin2 is the lowest. This is consistent with households that are highly
energy-cognizant investing in energy efficiency and solar adoption. Consumption bin intercept shifts
for leases are positive, but only one is significant, and then only at the 10% level.

47The lack of significance (and negative sign) may also be the result of conditioning on wealth and
consumption since households with children tend to have higher consumption. Households with longer length
of residence tend to be higher wealth as well.
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Table G.1: Structural parameter results

Param. Grp Parameter Estimate se t pval

σ -0.958 0.002 -549.337 0.000 ***

ω0 -3.388 0.463 -7.321 0.000 ***

ωmed 1.199 0.827 1.450 0.147σ;ω

ωlow 1.773 0.708 2.503 0.012 *

ρ0 1.985 0.017 113.817 0.000 ***

αmed -0.134 0.048 -2.825 0.005 **
ρ

αlow -0.172 0.085 -2.029 0.042 *

β0 11.464 0.240 47.777 0.000 ***

Wealth: middle 1/3rd -2.261 0.803 -2.815 0.005 **

Wealth: lowest 1/3rd -2.081 0.095 -21.863 0.000 ***

Lease -6.535 1.074 -6.082 0.000 ***

Lease x Wealth: middle 1/3rd 2.170 0.089 24.415 0.000 ***

Lease x Wealth: lowest 1/3rd 2.473 0.419 5.899 0.000 ***

Voter affiliation: D -0.696 0.392 -1.774 0.076 .

Voter affiliation: D + lease 0.809 1.006 0.804 0.421

Has 1 or more lines of credit 0.780 0.053 14.760 0.000 ***

Lines of credit 0.328 0.591 0.555 0.579

Length of residence -0.148 0.685 -0.215 0.830

Has children -0.145 0.298 -0.487 0.626

Listed as renter-occupied in InfoUSA -15.225 0.306 -49.749 0.000 ***

Sqft (1,000’s) 1.295 0.169 7.685 0.000 ***

Sqft2 (1,000’s) -0.063 0.835 -0.075 0.940

β

Stories -1.879 1.452 -1.294 0.196

γB -2.660 0.088 -30.368 0.000 ***

γC 1.967 0.960 2.050 0.040 *

γD 0.741 0.181 4.097 0.000 ***

Wealth: lowest 1/3rd: γB 4.386 0.420 10.432 0.000 ***

Wealth: middle 1/3rd: γB 2.639 1.578 1.673 0.094 .

Wealth: lowest 1/3rd: γC 0.393 0.722 0.544 0.586

Wealth: middle 1/3rd: γC -2.342 0.226 -10.370 0.000 ***

Wealth: lowest 1/3rd: γD 0.801 1.698 0.472 0.637

Wealth: middle 1/3rd: γD -1.721 1.513 -1.138 0.255

Wealth: lowest 1/3rd x Lease: γB,lease 0.383 0.951 0.403 0.687

Wealth: lowest 1/3rd x Lease: γC,lease -0.511 0.850 -0.602 0.547

γarea

Wealth: lowest 1/3rd x Lease: γD,lease -0.542 0.448 -1.211 0.226

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Includes consumption bin and time fixed effects. Robust std. errors from Arcidiacono and Miller (2011)
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Table G.2: Model predicted and actual adoption shares

Total Purchases Leases

Wealth Households Predicted Actual Predicted:Actual Predicted Actual Predicted:Actual Predicted Actual Predicted:Actual

High 61,229 2,567 2,445 1.050 1,714 1,553 1.104 854 892 0.957
Med 61,223 3,094 3,052 1.014 1,589 1,540 1.032 1,505 1,512 0.996
Low 61,215 1,767 1,747 1.011 694 711 0.977 1,072 1,036 1.035
All 183,667 7,428 7,244 1.025 3,997 3,804 1.051 3,431 3,440 0.997

To assess model fit, we use parameter estimates in Table G.1 to predict adoption probabilities
for each household, time period, consumption bin, and type. We then calculate the probability of
adoption within the study period as one minus the product of the probability of non-adoption in
each time period. We then aggregate across consumption bin and type for each household using the
weights from estimation. As in estimation, for adopters we observe the type (leaser vs. purchaser)
and consumption bin with certainty, which is reflected in the weights. Finally, we aggregate by
wealth bins and type to summarize total predicted adoption during the study period, which can be
directly compared to observed adoptions. While our consumption bin weights are restricted to reflect
the zip-level distribution of consumption, our type weights (leaser vs. purchaser) are unrestricted.
We find little separation, with a mean lease-type weight of 0.50 and a standard deviation of 0.01.

H Robustness Checks

H.1 Model Estimates with Rebound

We resize optimal installations assuming a rebound of ε = .1 for purchased systems, holding leased
systems sized to full offset as before (see Appendix C for sizing results). Using updated sizes, we
re-estimate the model. Results are largely robust to sizing with rebound and are qualitatively
identical to results presented above. With resizing, the estimated implicit discount rates across
wealth are 8.7%, 12.2%, and 13.4% , which can be compared to results in Table 2 of 10.0%, 13.9%,
and 15.3%. Differences between high- and low-wealth household implicit discount rates remain
significant. While estimated implicit discount rates are lower at all wealth levels, the ratio of θ for
high to low wealth remains identical at 1.5.

Table H.1: Implicit Discount Rates: Rebound elasticity for ε = .1

Wealth Marginal Utility of Income Annual Discount Rate ¯̄θ Ratio

High 0.04 (0.02) 8.7% (0.71%) 59.3 1.5
Med 0.12 (0.21) 12.2% (1.57%) 44.2 1.1
Low 0.18 (0.11) 13.4% (3.44%) 40.7 1
All 11.4% 48.0 –

Heteroskedasticity-robust standard errors in parentheses, calculated by delta method. The
difference between the high-wealth and low-wealth underlying implicit discount rate structural
parameters is statistically significant, with a p-value of 0.041.
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H.2 Model Estimates with Alternative Increase in Power Purchase
Rates

We assume the rate of increase in power purchase rates for leased systems is contracted at 4% (see
Equation 23), and in this section, we sensitivity test this assumption using ζPPA ∈ {.03, .05}. Based
on the data, we assume lease customers are assumed to size to full offset. Thus, we do not re-size
under the alternative values of ζPPA.

Results are qualitatively similar on implicit discount rates, with ζPPA = .03 resulting in estimated
implicit discount rates of 11%, 15.4%, and 16.8% for high, medium, and low-wealth households. At
ζPPA = .05, estimated rates are 8.8%, 12.3%, and 13.4%, slightly lower than main estimates of 10%,
13.9%, and 15.3%.

Table H.2: Implicit Discount Rates: ζPPA = .03

Wealth Marginal Utility of Income Annual Discount Rate ¯̄θ Ratio

High 0.01 (0.01) 11.0% (2.40%) 48.5 1.5
Med 0.17 (0.36) 15.4% (4.99%) 35.5 1.1
Low 0.33 (0.2) 16.8% (10.45%) 32.5 1
All 14.4% 38.8 –

Heteroskedasticity-robust standard errors in parentheses, calculated by delta method. The
difference between the high-wealth and low-wealth underlying marginal utility of income
structural parameters is statistically significant, with a p-value of 0.041. The difference be-
tween the high-wealth and low-wealth underlying implicit discount rate structural parameters
is not statistically significant, with a p-value of 0.607.

Table H.3: Implicit Discount Rates: ζPPA = .05

Wealth Marginal Utility of Income Annual Discount Rate ¯̄θ Ratio

High 0.04 (0.01) 8.8% (0.35%) 58.9 1.5
Med 0.11 (0.13) 12.3% (1.56%) 44.1 1.1
Low 0.17 (0.07) 13.4% (3.08%) 40.5 1
All 11.5% 47.8 –

Heteroskedasticity-robust standard errors in parentheses, calculated by delta method. The
difference between the high-wealth and low-wealth underlying marginal utility of income
structural parameters is statistically significant, with a p-value of 0.035. The difference be-
tween the high-wealth and low-wealth underlying implicit discount rate structural parameters
is statistically significant with a p-value of 0.0499.

H.3 Model Estimates with Alternative Scaling of η, ζ

In our main results, we estimate a value of η, the rate of decline of variable panel costs, from
the data. We also estimate a zip code x consumption bin-specific value of ζ, the rate of increase
in average electricity price. These estimates form the consumer expectations of future panel and
avoided electricity rates associated with sizing and adopting. We sensitivity test around these results
by scaling both η and ζbz by ± 20%, and by setting ζbz equal to a rate of 2.2% per year, a factor
commonly used by solar installers for sizing calculations and used by Google Project Sunroof in
calculating savings.
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Estimated implicit discount rates for all three are little changed. Scaling η, ζbz by a factor of
1.2 results in estimated rates of 10%, 13.9%, and 15.3%, identical to the main results to the first
decimal place. Scaling by a factor of .8 results in estimated rates of 10%, 14%, and 15.4% for high,
medium, and low-wealth households.

Table H.4: Implicit Discount Rates with scaled-up ζ, η

Wealth Marginal Utility of Income Annual Discount Rate ¯̄θ Ratio

High 0.02 (0.02) 10.0% (1.48%) 57.2 1.5
Med 0.11 (0.34) 13.9% (3.24%) 42.0 1.1
Low 0.2 (0.18) 15.3% (4.38%) 38.4 1
All 13% 45.8 –

Heteroskedasticity-robust standard errors in parentheses, calculated by delta method. The
difference between the high-wealth and low-wealth underlying marginal utility of income
structural parameters is not statistically significant, with a p-value of 0.227. The difference
between the high-wealth and low-wealth underlying implicit discount rate structural parame-
ters is statistically significant at the 10% level with a p-value of 0.060.

Table H.5: Implicit Discount Rates with scaled-down ζ, η

Wealth Marginal Utility of Income Annual Discount Rate ¯̄θ Ratio

High 0.06 (0.17) 10.0% (3.93%) 48.7 1.5
Med 0.16 (1.01) 14.0% (4.37%) 36.1 1.1
Low 0.28 (0.36) 15.4% (4.49%) 33.2 1
All 13.1% 39.3 –

Heteroskedasticity-robust standard errors in parentheses, calculated by delta method. The
difference between the high-wealth and low-wealth underlying marginal utility of income
structural parameters is not statistically significant, with a p-value of 0.708. The difference
between the high-wealth and low-wealth underlying implicit discount rate structural parame-
ters is statistically significant at the 10% level with a p-value of 0.079.

Setting ζbz = 2.2% for all consumption bins and areas primarily removes cross-sectional variation
in energy price trends across consumption bins. Estimated implicit discount rates are slightly lower
at 9.5%, 13.3%, and 14.7% for high-, medium-, and low-wealth households relative to our main
results of 10%, 13.9%, and 15.3%, respectively.
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Table H.6: Implicit Discount Rates with ζ = 2.2%

Wealth Marginal Utility of Income Annual Discount Rate ¯̄θ Ratio

High 0.05 (0.02) 9.5% (0.50%) 44.8 1.4
Med 0.14 (0.17) 13.4% (1.65%) 34.0 1.1
Low 0.2 (0.08) 14.7% (3.02%) 31.4 1
All 12.5% 36.8 –

Heteroskedasticity-robust standard errors in parentheses, calculated by delta method. The
difference between the high-wealth and low-wealth underlying marginal utility of income
structural parameters is statistically significant at the 10% level, with a p-value of 0.084.
The difference between the high-wealth and low-wealth underlying implicit discount rate
structural parameters is statistically significant, with a p-value of 0.017.

H.4 Model Estimates assuming T = 22

To test sensitivity of our results to the assumption on panel life, we set assumed panel life to T = 22.
Panel life enters both the sizing model and the estimation of θ; here we set T = 22 in both to
maintain consistency.

Results are highly similar to main results. Estimated implicit discount rates across wealth are
9.8%, 13.8%, and 15.2%, slightly lower than main results. The ratio of average θ between household
wealth bins of 1.44:1 and 1.1:1 is nearly identical to the main results.

Table H.7: Implicit Discount Rates Assuming Panel Life T = 22.

Wealth Marginal Utility of Income Annual Discount Rate ¯̄θ Ratio

High 0.05 (0.04) 9.8% (1.19%) 50.5 1.4
Med 0.15 (0.28) 13.8% (1.90%) 38.0 1.1
Low 0.22 (0.13) 15.2% (3.21%) 35.0 1
All 12.9% 41.2 –

Heteroskedasticity-robust standard errors in parentheses, calculated by delta method. The
difference between the high-wealth and low-wealth underlying marginal utility of income
structural parameters is not statistically significant, with a p-value .25. The difference between
the high-wealth and low-wealth underlying implicit discount rate structural parameters is
statistically significant, with a p-value of 0.005.

H.5 Model Estimates including Race Covariates

Data from InfoUSA allow us to extract race and ethnicity for each household head. We group all
households into four groups: Hispanic, White (non-Hispanic), Asian, and Black/Mixed and include
indicators for this race variable in estimation. We allow indirect utility for adopting to vary by race
interacted with wealth bins, but do not interact it with implicit discount rate or marginal utility of
income. Race is not used in the sizing model, and enters only in the adoption model.

Results are highly similar to main results, though the statistical significance of the parameters
estimating differences in implicit discount rates are no longer significant. Estimated implicit discount
rates across wealth are 10.3%, 14.3%, and 15.8%, all within .2% of the main results. The ratio of
average θ between household wealth bins of 1.5:1 and 1.1:1 remains identical to the main results.
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Table H.8: Implicit Discount Rates Including Race Covariates

Wealth Marginal Utility of Income Annual Discount Rate ¯̄θ Ratio

High 0.04 (0.02) 10.3% (0.36%) 51.5 1.5
Med 0.12 (0.11) 14.3% (5.72%) 38.1 1.1
Low 0.21 (0.22) 15.8% (5.25%) 34.7 1
All 13.4% 41.4 –

Heteroskedasticity-robust standard errors in parentheses, calculated by delta method. The
difference between the high-wealth and low-wealth underlying marginal utility of income
structural parameters is statistically significant, with a p-value < .01. The difference between
the high-wealth and low-wealth underlying implicit discount rate structural parameters is
not statistically significant, with a p-value of 0.233.

H.6 Model Estimates Assuming Finite Time Horizon

We re-estimate the adoption model as a finite time model as in de Groote and Verboven (2019),
which implicitly constrains the value function to include zero utility and zero continuation value at
the end of the 25-year lifespan of the panels. In contrast, our main specification assumes re-adoption
at T = 100 quarters. Results in Table H.9 imply higher implicit discount rates than our main results.
The ratio between high- and low-wealth households valuation of the flow of NEM benefits, captured
by θ, remain identical to the main specification results of 1.5:1, as does the ratio between medium-
and low-wealth households.

Table H.9: Implicit Discount Rates Estimated Assuming Finite Time Model

Wealth Marginal Utility of Income Annual Discount Rate ¯̄θ Ratio

High 0 (0) 13.2% (0.97%) 41.1 1.5
Med 0.26 (0.39) 18.5% (8.63%) 29.5 1.1
Low 0.72 (0.97) 20.1% (33.25%) 27.1 1
All 17.2% 32.6 –

Heteroskedasticity-robust standard errors in parentheses, calculated by delta method. The
difference between the high-wealth and low-wealth underlying marginal utility of income
structural parameters is statistically significant, with a p-value of < 0.001. The difference
between the high-wealth and low-wealth underlying implicit discount rate structural parame-
ters is not statistically significant, with a p-value of 0.807.

H.7 Model Estimates Using Next-Period Realized State Values

In our main specification, we estimate CCP’s from a first-stage flexible logit and generate Pr′

terms (next-period probability of adoption) by advancing all state variables by the expected ζ, η, t.
As an alternative, we generate Pr′ terms instead by taking the one-period lead of the model’s
predicted probability of adopting. This assumes that individuals know and anticipate the next-period
realizations of p̄ and C(K∗.

Results in H.10 indicate slightly higher estimated discount rates of 12.4% to 19.6%. The ratio of
high-wealth to low-wealth θ remains close to the main specification at 1.55:1.
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Table H.10: Implicit Discount Rates Estimated with Next-Period Realized State Values for
Conditional Choice Probabilities

Wealth Marginal Utility of Income Annual Discount Rate ¯̄θ Ratio

High 0.01 (0.02) 12.4% (3.96%) 43.4 1.6
Med 0.14 (0.75) 17.6% (7.22%) 30.9 1.1
Low 0.32 (0.45) 19.6% (5.76%) 27.9 1
All 16.5% 34.0 –

Heteroskedasticity-robust standard errors in parentheses, calculated by delta
method. The difference between the high-wealth and low-wealth underlying
marginal utility of income structural parameters is not statistically significant,
with a p-value of 0.295. The difference between the high-wealth and low-wealth
underlying discount rate structural parameters is not statistically significant,
with a p-value of 0.216.
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I Details on Borrowing Costs and Expectations

I.1 Potential Role of Borrowing Costs

One explanation for the heterogeneous implicit rates we estimate may come from credit constraints
that induce higher borrowing costs. Although our sample households are all homeowners who
would be expected to have access to home equity lines of credit (which is one of our controls),
credit constraints may still drive our results. To explore this possibility, we merge our sample with
household-level credit data from Experian based on the household address.

We obtain a 63% match rate with Experian data. Of those matching, only 6.7% have credit
scores in the sub-prime (less than 680) or near-prime (less than 780) range, which we consider to
be “poor” credit. Adopters have a slightly smaller share of poor credit at 5.9%. Poor credit is
more prevalent in low-wealth households (12.4%) and medium-wealth households (6.0%) relative to
high-wealth households (2.7%). Thus, we construct a binary indicator for poor credit, and another
binary indicator for un-matched households.

We estimate our model incorporating credit data and show that heterogeneity across wealth is
persistent, even conditional on credit. The intent here is to flexibly control for the credit-induced
cost of borrowing, allowing for a comparison across wealth conditional on prime-or-better credit. We
augment the specification shown in Section 6.4 with interactions between poor credit and wealth, as
well as interactions between un-matched status and wealth. Due to the small share of high-wealth
households that have poor credit, we restrict the effect of poor credit to be zero for high-wealth
households. We include intercept, lease intercept, and marginal utility of income (ω) interactions
for poor credit as well, all interacted with low- or medium-wealth. We fully interact ‘missing’ status
with wealth in intercept, lease intercept, and discount rate.

The results in I.1 suggest that credit constraints do not explain heterogeneity in discount rates.
We estimate conditional (on prime or better credit) implicit discount rates of 12.5% to 18.7%
(high-wealth and low-wealth, respectively). Even when we control for credit-by-wealth interactions,
the difference in implicit discount rates between low-wealth and high-wealth households is still
statistically significant. Importantly, the θ̄ ratio is nearly identical to our main results at 1.5:1,
showing that even for homeowners with excellent credit (and thus would presumably have access to
ample credit), there are notable differences in implicit discount rates.

Table I.1: Implicit Discount Rates Estimated with Interacted Controls for Credit

Wealth Credit Marginal Utility of Income Annual Discount Rate ¯̄θ Ratio

High All 0.0019 (0.0843) 12.5% (0.04%) 43.1 1.5
Med ≥ Prime 0.0016 (0.0379) 12.9% (7.48%) 42.1 1.4
Low ≥ Prime 0.0019 (0.1057) 18.7% (0.98%) 29.3 1
Med Poor 0.0016 (0.0392) 21.9% (12.23%) 24.9 2.1
Low Poor 0.0019 (0.1006) 46.6% (27.81%) 12.1 1
All 15.5% 37.6 –

All values are conditional on matching household credit (63% of sample). Heteroskedasticity-robust
standard errors in parentheses, calculated by delta method. The difference between the high-wealth and
low-wealth underlying marginal utility of income structural parameters is not statistically significant, with
a p-value of near 1. The difference between the high-wealth and low-wealth underlying discount rate
structural parameters for prime or better credit is statistically significant, with a p-value of < 0.001.
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I.2 Survey Evidence on Home Tenure Expectations

To better understand consumer expectations about the length of time they will live in their
current home, we draw upon evidence from Bollinger et al. (2025). That study runs a nationwide
representative survey using the vendor Dynata. There was a screening requirement for participants
to be considering purchasing (or have recently purchased) either solar panels or an electric vehicle.
There are also results restricted to homeowners. The final sample of 3,305 respondents, of which
1,673 are homeowners. All but one homeowner answered the income question (non-homeowners were
more likely to not respond to the income question). Figure I.1 presents the fraction of responses
in an income bin by the expected home tenure bin (there are five possible bins they could choose
from). In other words, on the far left we see that roughly 32% of households making over $150,000
per year expect to stay in their home more than 20 years. A key takeaway from this figure is that
a similar fraction of households expect to stay in their homes for over 20 years across all income
groups. Broadly, the figure shows similar patterns, with some increase in very short tenures from
the lowest-income group, possibly due to retirees who do not expect to stay long in their home.
Note that few homeowners earn under $50,000 a year in California, so we are not very concerned
about this result.

Figure I.1: National Survey. Expectation to stay in current residence by income.

There are also similar expectations across income groups for future electricity price growth, as
can be seen in Figure I.2 below. There is an extremely similar figure for expectations of future solar
prices as well (Figure I.3). In short, the evidence suggests that there are negligible differences across
wealth groups in expectations of home tenure, future electricity prices, and future electricity prices.
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Figure I.2: National Survey. Expected electricity prices by income.

Figure I.3: National Survey. Expected solar prices by income.
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J Counterfactual Methodology

All counterfactual scenarios report the ratio of predicted counterfactual adoptions to baseline
predicted adoptions occurring within the study sample and during the study period. In all cases,
we calculate adoption as one minus the joint probability of choosing “do not adopt” in each of
the 10 time periods in the study window. This allows us to report the total number of adoptions
predicted over the period, rather than examining across time periods. In the following, we dive into
the details of the counterfactual methodology.

The value of adoption, δ1, is a terminal state and so there is no continuation value. To calculate
δ0, we need to calculate the value function. We do this by taking the infinite sum given in 1. In
practice, we forward simulate the state variables many periods in the future (S periods), assume
V (pS , V CS , FCS) = δ1(pS , V CS , FCS) (i.e. treat the value as if everyone who had not yet adopted
solar at period S purchases solar), which is a benign assumption if S is large enough. We then then
backward iterate to calculate δ0 in the current period using the below expression for the inclusive
value of adoption in each period:

E [max(δ0 + σϵ0, δ1 + σϵ1)]

= σE [max(δ0/σ + ϵ0, δ1/σ + ϵ1)]

= σ [log (exp(δ0/σ) + exp(δ1/σ)) + γ] (29)

Under counterfactual regimes, we must account for the fact that the probability of adopting in
the next period will also change. I.e., counterfactuals require counterfactual CCP’s – as the utility
payoff of adopting changes (in one or all periods), the probability of adopting in the next period
also changes. Here, we use model estimates to update both δ1 − δ0 and log(Pr′) as well.

Our strategy for calculating counterfactual log(Pr′+) is to calculate the difference in adoption
utility implied by the estimated parameters of the model. Arcidiacono and Miller (2020) discuss
identification of counterfactual CCPs and show conditions under which counterfactual CCPs are
identified. Single action finite dependence (which holds if the distribution of states does not depend
on the initial choice for a particular action) is one such assumption. Under our counterfactual, we
continue with our assumption that households’ expectations are correct excepting a short term
prediction error (as in Scott (2014) and de Groote and Verboven (2019)) using the same solar and
electricity price trends that existed in the current environment.

We write future changes in the probability of adopting as an infinite series of (known) flow
utility payoffs. Let A capture the scaled (by 1/σ) utility of adopting today relative to the discounted
utility of adopting tomorrow, A = (u− ρu′)/σ, and B capture the next period adoption probability
and Euler constant, so that we can write the value of adopting as:

1

σ
(δ1 − δ0) =

A︷ ︸︸ ︷
1

σ
(1− ρ(1 + ζ))θq∗p̄− 1

σ
(1− ρ)FC − 1

σ
(1− ρη)V C +

1

σ
(1− ρ)Xβ

+ ρ
(
log(Pr′)− γ

)︸ ︷︷ ︸
B

Under each counterfactual scenario, we change the utility of adopting today by ∆u and the
expected utility of adopting tomorrow by ∆u′, so that ∆A = (∆u− ρ∆u′) /σ.

68



The counterfactual change in the probability of adopting, Pr+, is determined by the change in
A plus the change in B:

Pr+ = Λ

(
1

σ
(δ1 − δ0) + ∆A+∆B

)
(30)

Note we can write:

Λ−1(Pr) = log

(
Pr

1− Pr

)
and thus

log(Pr′) = Λ−1(Pr′) + log(1− Pr′)

=
1

σ

(
δ′1 − δ′0

)
+ log(1− Pr′), (31)

where δ′1 is the next-period utility of adopting and δ′0 is the next period utility of non-adoption.
Using this expression, we can write B as:

B = ρ(log(Pr′)− γ) = ρ

(
1

σ
(δ′1 − δ′0) + log(1− Pr′)

)
− ργ

and we can write B+ (the value of B under the counterfactual) as:

B+ = ρ
(
log(Pr′+)− γ

)
= ρ

(
1

σ
(δ′+1 − δ′+0 ) + log(1− Pr′+)

)
− ργ

By plugging in the values for δ and δ+, we can write the change in B as:

∆B = B+ −B

= ρ

(
1

σ
(δ′1 − δ′0) + ∆A′ +∆B′ + log(1− Pr′+)

)
− ργ −B

= ρ

(
1

σ
(δ′1 − δ′0) + ∆A′ + ρ(log(Pr

′′+)− log(Pr
′′
)) + log(1− Pr′+)

)
− ργ

−ρ

(
1

σ
(δ′1 − δ′0) + log(1− Pr′)

)
− ργ

= ρ∆A′ + ρ2(log(Pr
′′+)− log(Pr

′′
)) + ρ(log(1− Pr′+)− log(1− Pr′))

= ρ∆A′ + ρ∆B′ + ρ(log(1− Pr′+)− log(1− Pr′)) (32)

where ∆A′ is the next-period difference between counterfactual and actual A. ∆B can be rewritten
using the following recursion:

∆B = ρ∆A′ + ρ(log(1− Pr′+)− log(1− Pr′)) + ρ∆B′

= ρ∆A′ + ρ2∆A′′ + ρ
(
log(1− Pr′+)− log(1− Pr′)

)
(33)

+ ρ2
(
log(1− Pr

′′+)− log(1− Pr
′′
)
)
+∆B

′′

where we denote the next period’s next-period logged probability of adopting as log(Pr′′) and
log(Pr′′+), and additional future probabilities of adopting as log(Pr

′
s) and log(Pr

′
s+).
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The expression for ∆B in (33) is a recursive sum that can rewritten as:

∆B =

∞∑
s=1

ρs∆A
′
s +

∞∑
s=1

ρs

(
log

(
1− Pr

′
s+

1− Pr′
s

))
, (34)

The s subscript on A
′
s and Pr

′
s indicates that A, Pr, and Pr′+ change in future periods based

on the evolution of the state variables and are affected by the counterfactual changes (electricity
prices, solar prices, etc.). Each recursion produces ∆A′ that is equal to ∆A scaled by ρ,48 as
well as a discounted logged ratio of the probability of not adopting in the next period under the
counterfactual to the probability of not adopting in the next period under the baseline. While this
ratio is close to unity, a positive ∆A, for example, will result in a higher probability of adopting in
subsequent periods, decreasing the probability of not adopting and decreasing the logged ratio.

To calculate the second term in equation (34), we forward-simulate the deterministic progression
of C and q∗p̄ to the period s = S = 151 using the trends given by η and ζb,z. We assume that all
households will make a terminal choice at this time period, and calculate the expected value of

that choice as log(exp(
δ
(S)
1
σ ) + exp(0)) + γ. Setting s = 150, we substitute the expected value of not

adopting as the previous quantity scaled by ρ and calculate the probability of adopting at s = 150.
We record the log of one minus that probability, scaled by ρs. We then iterate from s = 150 to s = 0,
taking a cumulative sum of log(1− Pr) at each value of s. At s = 0, we discard the continuation
value in favor of using Equation 34, and substitute the cumulative sum of log(1 − Pr) for the
denominator of the second term. We then calculate δ1 under the counterfactual – a straightforward
task for any counterfactual that re-scales C and/or q∗p̄, and repeat the process to calculate the
numerator of the second term in 34.

The first term in equation (34) is straightforward. Adding ∆A′ to 34, we see:

∆A+∆B =
∞∑
s=0

ρs∆A
′
s +

∞∑
s=1

ρs

(
log

(
1− Pr

′
s+

1− Pr′
s

))
,

which allows for closed form calculation of the infinite sum of the first term, including cases
where ∆A′ = η∆A, as is the case when counterfactual changes apply to the variable cost term.

Finally, with ∆A+∆B in hand, we calculate the counterfactual Pr
′+ using Equation 30.

48For example, under a counterfactual price change that scales the variable cost of solar by some amount in
every period, ∆A is equal to that difference in the variable installation costs and we have that ∆A′ = η∆A.
A counterfactual change in the fixed costs of solar leads to ∆A′ = ∆A.
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K Counterfactual Welfare-Relevant Outcomes

K.1 Calculation Methodology

We formulate demand as the probabilistic quantity of capacity installed as a function of the fixed
and variable costs of installation:

dibet(Ct) = K∗(Ct, pt; γi, ei, bi)P̃ r
adopt

(Ct, FCi, pt, ei, bi, Xi,K
∗(Ct, pt; γi, ei, bi)), (35)

where K∗ is the optimal sizing function, Ct is the per-watt cost of a panel at time t, pt are the
retail electricity rates, γi represents the roof profile of household i, and bi and ei are household
consumption bin b and type e, respectively. This represents quantity (in watts of solar capacity)
demanded conditional on adopting. Fi is the fixed cost of installation which does not enter the

optimal sizing K∗. P̃ r
adopt

is the unconditional probability of adopting conditional on K∗, household
demographics Xi, time t, type, consumption bin, F , Ct, and pt. We can use model predictions

to estimate a conditional probability of adopting Pradopt. Thus, we calculate P̃ r
adopt

using the
following:

P̃ r
adopt
t = Πt

s=1

(
1− 1(s ≥ 2)Pradoptt−s+1

)
Pradoptt

For each household, type, consumption bin, time period, and value of Ct, we calculate K∗ as a
function of price, generate q∗p̄ and TC, and use the adoption model to calculate the probability of
adopting.

K.1.1 Consumer surplus

Household surplus is calculated by integrating equation (35) over average cost per watt, defined as:

CSibe =
10∑
t=1

∫ m

0

(
C̃t + x

)
dibet(C̃t + x)dx,

where the term C̃t is given as:

C̃t =
F +K∗Ct

K∗ .

The upper limit of integration m is chosen to approximate the intercept of the demand curve.
Because Type I extreme value shocks are unbounded, the probability of adopting never reaches 0.
In practice, we numerically integrate over the range of [0, 5.60], and assume that the probability of
adopting when C̃t is $5.60 per watt larger than what is observed in the data is negligible.49 The
consumer surplus, weighted by the unconditional probability of adopting, is summed over the 10
time periods in the sample.

Because K∗, q∗, and other important quantities vary over time within a household and type, we
calculate the expected capacity installed, generation, government expenditures including counterfac-
tual subsidies and expenditures on the federal investment tax credit (ITC), utility expenditures,
and avoided damages using a similar equation, which appropriately weights each time period by the
probability of not adopting prior to that period and the probability of adopting:

49the maximum value of C̃t in our data is $4.17/W.
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K∗
ibe =

10∑
t=1

P̃ r
adopt
t K∗

ibet. (36)

Finally, we take the weighted sum across type and consumption bin using wibe, resulting in a
total for each household in our sample.

K.1.2 Government expenditures

Counterfactual 3 explores the replacement of the NEM embedded subsidy with an explicit subsidy
paid per-watt and per-installation. In addition to explicit subsidies, payment of the federal ITC will
change under the counterfactuals (e.g., fewer households might adopt smaller systems). We report
these effects as ∆GovernmentExpenditures. Changes in private expenditures are accounted for in
CSi.

K.1.3 Utility profits and expenditures

We evaluate the change in utility expenditures by considering the subsidies embedded in the NEM
policy. Because current NEM policy provides electric bill savings in excess of the avoided cost savings,
the difference between the avoided cost and p̄ is an embedded subsidy. Furthermore, critics of NEM
policy note that the embedded NEM subsidy is substantial, is primarily paid to high-wealth solar
adopters, and increases electricity prices on lower-wealth non-adopters. Our second counterfactual
is based on a reform of NEM policy that does not entirely eliminate the embedded subsidy – under
this counterfactual, households can no longer “bank” excess solar generation (and are instead paid
at the avoided cost rate for export to the grid). Thus, we calculate the change in utility expenditures
as the change in the embedded NEM subsidy, calculated as:

∆UtilityExpendituresibet = θ6%

(
(1− s)× q∗

′
(p̄′ − 0.062)− q∗(p̄− 0.062)

)
in which θ6% is the value of θ with a 6% discount rate (an appropriate rate for an investor-owned
utility), s is the export share s ∈ {0.3, 0.5}, SubsW and SubsI are the explicit subsidies, q∗

′
and

p̄′ are counterfactual generation and average value of offset electricity after resizing. p̄′ ≥ p̄ as
the average value of non-grid-exported electricity increases as more is exported to the grid. We
calculate total ∆Subsidyi using equation (36) and then summing over type and consumption using
the weights wibe.

K.1.4 Installer surplus

Installer profits change due to the different number and sizes of installations under the counterfactual.
To assess the impact on profits, we assume monopolistic pricing and use our estimated aggregate
price elasticity of e = −1.7. This implies an optimal markup of msolar = e/(1 + e) − 1 = 1.43.

The installer margin for any given installation is then given by p( msolar

1+msolar ) = 0.59p, where p is
the installation price inclusive of the ITC. We can thus replace price with expected revenue to
calculate installer surplus (pre-tax). We report aggregated installer surplus in relevant welfare tables.
For contribution to the MVPF, we calculate the fiscal externality on government expenditures in
Appendix L.1.
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K.1.5 Environmental damages avoided

A primary goal of NEM policy is to encourage the adoption of renewable energy in order to decrease
negative externalities associated with fossil-fuel based electricity generation. Counterfactual welfare
calculations include a “dollarization” of environmental and health damages avoided based on Sexton
et al. (2021), which calculates the hourly marginal emissions factors for all dispatchable generators
capable of serving, inter alia, the relevant portion of the grid operated by the California Independent
System Operator (CAISO) during the period including 2014-2016. These marginal emissions factors
for each potentially responding plant are calculated as dollars of damages per unit of emissions
of three criteria pollutants: NOx, SOx, and PM2.5, plus CO2 emissions50. Yearly damages are
calculated for each potentially responding plant based on emissions location, local dispersion, and
local population density and composition. Dollarized yearly damages are then summed over all
potentially responding plants based on estimated responsiveness. Hourly generation profiles for each
zip code in the sample are used to convert one watt of capacity K to avoided emissions, and yearly
damages are summed to the 25-year lifetime of the panel using a 2% social discount rate, a value
of λ = 0.8%, and an expected decline in grid emissions equal to 1.75% per year. Finally, we sum
expected environmental damages avoided over sample time and type as noted before.

K.2 Counterfactual Welfare Results

Table K.1: Total Welfare for a 50% export rate.

Consumer Installer Gov Subsidy Gov ITC Utility Avoided Total Total Total
Wealth Surplus Surplus Expenditures Expenditures Surplus Damages Adoptions Capacity Generation Generation

$1,000’s $1,000’s $1,000’s $1,000’s $1,000’s $1,000’s kW MWh/y kWhy/kW

Baseline
High $37.1 $38.8 $0.0 $19.8 -$55.6 $10.1 2567 14,167 21,277 1,502
Med $32.6 $46.7 $0.0 $23.8 -$63.7 $12.3 3094 17,043 26,955 1,582
Low $14.4 $24.0 $0.0 $12.2 -$30.3 $6.3 1767 8,708 13,702 1,573
All $84.0 $109.5 $0.0 $55.8 -$149.6 $28.7 7428 39,917 61,934 1,552

Lowered Compensation for Exported Solar
High $22.7 $29.7 $0.0 $15.1 -$33.6 $7.7 2214 10,789 16,474 1,527
Med $23.6 $35.4 $0.0 $18.1 -$38.0 $9.3 2596 12,864 20,560 1,598
Low $11.4 $18.3 $0.0 $9.3 -$17.6 $4.7 1524 6,549 10,433 1,593
All $57.7 $83.4 $0.0 $42.5 -$89.2 $21.7 6334 30,202 47,468 1,572

Lowered Compensation for Exported Solar plus Mixed Subsidy
High $26.7 $32.6 $9.8 $16.6 -$39.8 $9.2 2493 12,929 19,607 1,516
Med $29.9 $43.8 $13.0 $22.3 -$50.3 $12.5 3322 17,337 27,536 1,588
Low $15.9 $25.0 $7.9 $12.7 -$25.9 $7.0 2143 9,762 15,438 1,581
All $72.5 $101.4 $30.7 $51.7 -$116.0 $28.7 7959 40,028 62,581 1,563

50a Social Cost of Carbon of $41/ton is used
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Table K.2: Total Welfare for a 30% export rate.

Consumer Installer Gov Subsidy Gov ITC Utility Avoided Total Total Total
Wealth Surplus Surplus Expenditures Expenditures Surplus Damages Adoptions Capacity Generation Generation

$1,000’s $1,000’s $1,000’s $1,000’s $1,000’s $1,000’s kW MWh/y kWhy/kW

Baseline
High $37.1 $38.8 $0.0 $19.8 -$55.6 $10.1 2567 14,167 21,277 1,502
Med $32.6 $46.7 $0.0 $23.8 -$63.7 $12.3 3094 17,043 26,955 1,582
Low $14.4 $24.0 $0.0 $12.2 -$30.3 $6.3 1767 8,708 13,702 1,573
All $84.0 $109.5 $0.0 $55.8 -$149.6 $28.7 7428 39,917 61,934 1,552

Lowered Compensation for Exported Solar
High $29.3 $35.4 $0.0 $18.1 -$46.7 $9.2 2418 12,902 19,501 1,511
Med $28.5 $42.1 $0.0 $21.5 -$52.4 $11.0 2854 15,348 24,353 1,587
Low $13.4 $21.5 $0.0 $11.0 -$24.5 $5.6 1639 7,777 12,280 1,579
All $71.2 $99.1 $0.0 $50.5 -$123.6 $25.9 6911 36,027 56,134 1,558

Lowered Compensation for Exported Solar plus Mixed Subsidy
High $30.8 $36.2 $3.6 $18.5 -$49.0 $9.7 2524 13,597 20,519 1,509
Med $30.9 $45.2 $4.4 $23.1 -$57.5 $12.2 3136 16,954 26,858 1,584
Low $15.0 $24.0 $2.5 $12.2 -$27.9 $6.4 1863 8,918 14,054 1,576
All $76.7 $105.4 $10.5 $53.8 -$134.4 $28.3 7523 39,469 61,430 1,556

Table K.3: Changes in Welfare-Relevant Outcomes (Millions $; % Change)

Wealth ∆ Consumer ∆ Installer ∆ Utility ∆ Avoided ∆ Government
Surplus Surplus Surplus Damages Expenditures

Lowered Compensation for Exported Solar
High -$7.8 (-27%) -$3.4 (-10%) $8.9 (19%) -$0.9 (-10%) -$1.7 (-10%)
Med -$4.1 (-14%) -$4.6 (-11%) $11.3 (22%) -$1.2 (-11%) -$2.3 (-11%)
Low -$1.0 (-7%) -$2.5 (-11%) $5.7 (23%) -$0.7 (-12%) -$1.3 (-11%)

All -$12.9 (-18%) -$10.4 (-11%) $26.0 (21%) -$2.8 (-11%) -$5.3 (-11%)

Lowered Compensation for Exported Solar plus Mixed Subsidy
High -$6.2 (-20%) -$2.6 (-7%) $6.6 (14%) -$0.4 (-4%) $2.3 (10%)
Med -$1.7 (-5%) -$1.5 (-3%) $6.2 (11%) -$0.1 (-1%) $3.7 (13%)
Low $0.6 (4%) $0.0 (0%) $2.3 (8%) $0.2 (2%) $2.5 (17%)

All -$7.3 (-9%) -$4.0 (-4%) $15.1 (11%) -$0.3 (-1%) $8.5 (13%)

All estimates assume 30% export to grid.
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L Marginal Value of Public Funds (MVPF)

L.1 MVPF Methodology

The MVPF is the ratio of the policy beneficiaries willingness to pay for a policy to the government
expenditures of the policy (Finkelstein and Hendren, 2020). We calculate the MVPF for counterfac-
tual 2 relative to counterfactual 1 as the addition of up-front subsidies along with the NEM reform
provides an appropriate setting to evaluate those expenditures. We construct the MVPF for each
wealth bin to separately examine the effectiveness of counterfactual 2 spending across the wealth
distribution.

The MVPF takes the form of(
∆′CS +∆′UtilityExpenditures+∆′Damages

)
/∆′GovernmentExpenditures,

in which ∆′ is the difference between counterfactual 2 and counterfactual 1 values. Under the
50% export assumption, direct changes in government expenditures via the ITC and subsidies
increase from -$4,657 to +$6,600 (in $1,000’s, see Table 6 ). However, the MVPF includes the fiscal
externality of the change in government expenditures resulting from changes in tax revenues on
utility and installer profits. Damages and consumer surplus are unchanged in MVPF calculations.

L.1.1 Utility MVPF effects

Following Hahn et al. (2024) and noting that the utility in our case is an investor-owned utility (so
α in their study is zero), we define the government fiscal externality from utility tax revenues as:

(P − [(LCOE + ct) · (1 +m)]) · τ,

in which LCOE is the levelized avoided cost of solar energy.
Further noting that (LCOE+ct) is equal to the avoided cost calculated in E3 (2022), we calculate

the government fiscal externality as the sum across observations of (Pi−0.062)(1+m)τ , weighted by
the probability of adopting. We use a corporate tax rate of τ = 0.10 and an economy-wide markup
of m = 0.08. As an illustrative calculation and to roughly match real-world short-run marginal
borrowing costs, we use θ4%, a government discount rate of 4%, to calculate the present value of
the fiscal externality which reflects the borrowing cost associated with changes in tax revenue. Our
results would scale with different assumptions of the government borrowing rate. For high-wealth
households, the government fiscal externality from utility tax revenues totals -$2,592 in Scenario 1,
and -$1,840 in Scenario 2, leading to a ∆′GovernmentExpenditures = $11, 257 + $752 = $12, 008.
Results are shown in the “Government Expenditures” column of table 7.

In the MVPF numerator, we take the change in Consumer Surplus, ∆′CS and the calculated
change in damages ∆′Damages directly from Table 6. We account for the change in utility
expenditure as in Table 6, but adjust for markup and the corporate tax rate using the same
assumptions as before. We calculate utility expenditures for each potential adoption and sum over
all observations, weighed by probability of adopting. In order to adjust for markup m and tax rate
τ , we calculate the change in utility expenditures for any possible installation as:

(P − [(LCOE + ct) · (1 +m)]) · (1− τ)
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To calculate the total expected effect, we multiply this number by the probability of the installation
occurring and aggregate across all possible installations. We calculate the present value of this flow
using θ6% as in Appendix K.

Results of this calculation are shown in the “Utility Expenditures” column of Table 7.

L.1.2 Installer MVPF effects

Installer profits change due to the different number and sizes of installations under the counterfactual.
To assess the impact on profits, we use the implied markup of msolar = 1.42 from Appendix K.
The MVPF calculation in (Hahn et al., 2024) accounts for industry average markup m = 0.08 and
divides installer surplus between fiscal externality and installers using corporate tax rate τ = 0.10,
as in utility effects above. We calculate analogous fiscal externalities for installers, using the implied
marginal cost of p

msolar+1
. The surplus generated by a given installation, relative to the economy-wide

average is:

p−
(

p

msolar + 1

)
(1 +m) = p

(
msolar −m

1 +msolar

)
.

We can replace price with revenue to get an expression for the total additional surplus relative to
the economy average, and then multiply by τ to calculate the additional government surplus and by
1− τ to calculate the installers’ surplus.

L.2 MVPF Results

We report MVPF results for the 30% export to grid assumption here.

Table K.1: Changes in Outcomes (Millions $) and Marginal Value of Public Funds from
Comparing the Two Counterfactual Scenarios. Assumes 30% export to grid.

Wealth Consumer Installer Utility Avoided Government MVPF
Surplus Surplus Surplus Damages Expenditures

High $1.6 $0.7 -$2.0 $0.5 $4.2 0.18
Med $2.4 $2.6 -$4.5 $1.2 $6.3 0.27
Low $1.6 $2.1 -$3.0 $0.8 $3.9 0.40

All $5.6 $5.4 -$9.4 $2.5 $14.5 0.28
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