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Abstract
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goods. We clarify that averting expenditures overestimate the lower-bound
WTP for improved public goods if actors get additional utility from the de-
fensive good. We demonstrate the effect empirically in the context of bottled
water purchases in response to hydraulic fracturing, and find the reduced-form
estimate exceeds the true value by a factor of 200 to 400 percent.
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1 Introduction
The rise of hydraulic fracturing (‘fracking’) in the United States has led to a dramatic
increase in oil and gas extraction as well as a significant spatial shift in extraction
activity. Many areas located over shale deposits have seen a host of benefits including
jobs, lower energy prices, royalties, and tax revenues, as well as attendant increased
burdens on public infrastructure including roads, water supplies, and wastewater
treatment (Hausman and Kellogg, 2015). Furthermore, public fears of potential
drinking water contamination have grown prominent.

Fracking involves extracting gas and/or oil from geologic formations below the
caprock that forms the geologic floor for groundwater. This requires a well bore to
pass through groundwater strata. When well bore casings are not properly sealed, it
is possible for either components of drilling and fracking fluids or naturally occurring
methane to intrude into groundwater aquifers. Contamination risks also arise from
other aspects of the production process, such as possible leaks in plastic liners on
holding ponds, or spills from trucks or pipelines. As the magnitude and consequences
of these risks are not well understood, households build perceptions of risks to water
quality; these perceptions, in turn, influence household choices over consumption of
tap water and alternative water sources. Previous research suggests that nearby drill
rigs and fracturing activity cause decreased property values (Muehlenbachs, Spiller,
and Timmins, 2015; Gopalakrishnan and Klaiber, 2013), decreased property rents
(Muehlenbachs, Spiller, Steck, et al., 2015), and increased purchases of bottled water
(Wrenn, Klaiber, and Jaenicke, 2016).

One way to estimate welfare effects from changes in environmental quality, such
as water quality, is to measure averting or defensive expenditures: that is, household
expenditures on goods or services that ameliorate or substitute for the change
in environmental quality. Intuitively, if averting expenditures reduce households’
exposure to pollution—but households can reduce their exposure only so far—the
averting expenditure represents a lower bound on consumers’ willingness-to-pay for
improved environmental quality. However, when the behavior or substitute has
other characteristics that provide positive utility, the averting expenditure may
not represent a lower bound after all (Bartik, 1988). When consumers choose
averting behaviors, their willingness to pay (WTP) includes other characteristics of
the substitute good, besides perceived higher environmental quality. For instance,
consumers who perceive water quality risks from fracking and choose to substitute
bottled water for tap water may also enjoy the taste of bottled water, or the portability
of bottles. If these characteristics enter consumers’ utility functions directly, then
expenditures on bottled water do not represent a lower bound on the compensating
variation for a change in water quality. Rather, the observed expenditures should
be adjusted downward to account for the component of utility that is due to other
desirable characteristics. Yet this adjustment is not common in the literature; papers
that use defensive expenditures to measure WTP for public goods mention the issue
infrequently, and even more rarely account for it empirically.

We begin by evaluating the change in pure expenditure due to the entry of
fracking in a reduced-form context. Results from our preferred models suggest that
consumers respond to the entry of fracking by increasing purchases of bottled water,
with an average expenditure of $56.89 per household per quarter, but only a fraction
of this is attributable to the specific attribute of avoiding exposure to tap water
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potentially contaminated (or perceived to be contaminated) by fracking.1
We then employ models common in the industrial organization field to estimate

household demand functions for bottled water, and include “avoiding potentially
contaminated tap water” as a time- and location-varying attribute of water purchases.
We begin with a traditional horizontal consumer demand model extended to allow
for consumer heterogeneity over observable and unobservable characteristics, as well
as estimating household-level fixed effects in preferences for the “outside good”, tap
water. We estimate our model using supermarket scanner data with fine resolution
both spatially (zip code) and temporally (weekly). This allows us to compare the
WTP implied by a pure-expenditure reduced form model to the WTP implied by
the demand model.

Our paper makes several contributions. First, we extend the environmental
valuation literature by applying a structural model of consumer demand to a private
retail good that is linked to environmental quality. As information on consumer
purchases becomes more readily available, it becomes more feasible for researchers
to assess WTP for non-market goods, like environmental quality, by measuring
changes in consumption of market substitutes. We build on efforts of previous
researchers who have used supermarket scanner data in reduced-form models to
estimate WTP for environmental quality, particularly those who have used bottled
water expenditures to measure WTP for water quality (Graff Zivin, Neidell, and
Schlenker, 2011; Wrenn, Klaiber, and Jaenicke, 2016). These researchers suggest the
resulting estimates represent a lower-bound WTP, but do not address the degree
to which the so-called “lower bound” may be overstated due to joint production (of
utility) that arises from desirable product characteristics. We address this, and offer
an empirical demonstration of an alternative approach that addresses the concern
noted by Bartik (1988).

Second, we contribute to research on the benefits and costs of increased fracking
activity. In addition to many economic benefits, other authors have documented costs
associated with air pollution emissions, increased trucking, habitat fragmentation,
and noise and crime (Mason, Muehlenbachs, and S. Olmstead, 2015). Perceived and
real impacts to water quality, including drinking water resources, have also been a
central concern among policymakers and local residents. In theory, as Hausman and
Kellogg (2015) note, any observed changes in home values capture the value of all local
environmental disamenities to the marginal resident. However, changes in housing
prices may also capture the effects of local booms, in addition to environmental
disamenities.2 In addition, when consumers have heterogeneous preferences, changes
in housing prices may not accurately capture marginal valuations or welfare effects
(Kuminoff and Pope, 2014; Hausman and Kellogg, 2015). Furthermore, policymakers
and others may wish to understand how much of a composite impact is attributable
to concerns about water quality, and studying this (and potentially other component
parts) provides useful information about the overall magnitude of the value of
environmental disamenities.

1The $16.99 figure is based on the monetary value of the change in indirect utility associated
with consumption of bottled water per ounce, and assumes constant marginal utility of bottled
water consumption. As we discuss in detail later, declining marginal utility is a more realistic
assumption, and would result in a lower estimate.

2Local boom effects may also affect consumers’ expenditures on bottled water. However, we
can control for this explicitly because we observe (time-varying) household-level income and
expenditures.
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Finally, we contribute to the literature on demand estimation by addressing a
specific type of household-level heterogeneity with a novel specification that allows
us to capture household-level taste for tap water. Consideration of this type of
heterogeneity is important for consumer demand models where households may have
varied tastes for the “outside good,” the alternative to not purchasing any of the
products in the model. The situation is particularly relevant to the health insurance
purchase decision, where those opting to not purchase health insurance may do so
due to persistent (but unobserved) tastes. We use simulation to show that failing to
account for this heterogeneity leads to biased and potentially inconsistent estimates.

The remainder of the paper proceeds as follows: Section 2 provides background
on the empirical setting and discusses related literature. In Section 3 we describe our
model. In Section 4 we document the data we use. In Section 5 we provide results
and discussion, and Section 6 concludes.

2 Background

2.1 Hydraulic Fracturing

The rise of hydraulic fracturing for shale gas in US energy production has been
dramatic. Shale gas grew from 5% of total US dry gas supply in 2004 to 56% in 2015.3
Thanks to the suite of technologies that has allowed production from formations
that were previously judged uneconomic, natural gas has largely replaced coal in the
production of electricity. 4 The largest contribution to shale gas has been from the
Marcellus Shale, which underlies Pennsylvania, New York, Ohio, and West Virginia.

The dramatic growth in production has brought significant economic benefits as
well as environmental concerns. Among the more prominent environmental concerns
is the potential for contamination of surface water and groundwater. The fracturing
process involves the high-pressure injection of millions of gallons of fluid down a
wellbore, including chemicals that may be toxic or regulated (Stringfellow et al.,
2014; Fetter, 2019). After the fracture has been completed, much of this water, as
well as other produced water from the shale formation, may return to the surface,
bearing contaminants from deep underground (sometimes including heavy metals
or radionuclides (S. M. Olmstead et al., 2013)). Since the wellbore and production
casing must extend through groundwater resources to reach the productive shale,
concerns have been raised that improper casing or other errors in the production
process could result in groundwater contamination.

Another source of possible water contamination arises from the disposal of
flowback fluid. In the Marcellus region, especially in Pennsylvania, geologic features
constrain the ability of operators to reinject the flowback fluid back underground.
The flowback can sometimes be recycled into fracturing fluid for a subsequent fracture,
but this is not always feasible, due to high concentrations of dissolved solids that
may hinder its effectiveness (Blauch, 2010). Alternative disposal options include
expensive truck transport across state lines to Ohio or West Virginia, where injection
wells are more readily available. The other major disposal option is discharge to a

3EIA Natural Gas Monthly data through December, STEO through May 2015 and Drilling Info;
http://www.eia.gov/conference/2015/pdf/presentations/staub.pdf.

4http://www.cnbc.com/2015/07/14/natural-gas-tops-coal-as-top-source-of-electric-power-
generation-in-us.html
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wastewater treatment facility, but a number of studies have found that municipal
facilities lack the technology to adequately remove contaminants frequently present
in flowback water. As a result, flowback fluid disposal may threaten both surface
water and groundwater resources.

Other research, as well as popular media such as the film Gasland, has addressed
the possibility that methane could migrate through strata into groundwater resources.
Although this possibility is contested in scientific literature, with several papers
suggesting that shale gas production decreases the likelihood of methane infiltration
into groundwater by relieving pressure exerted by gas formations, it remains a matter
of widespread public fear that may lead consumers to invest in defensive expenditures
so as to avoid perceived risks to water quality.

2.2 Welfare Effects and Averting Behavior

There is a long history of economic literature on measuring averting expenditures
on market goods to measure WTP for improvements in non-market goods such as
environmental quality. The basic idea recognizes that demand for ‘defensive’ products
such as air filters is a function partly of the utility from consuming the outside option,
such as unfiltered air. Intuitively, one way to estimate societal WTP for a public good
like high-quality ambient air would be to measure private expenditures on defensive
technologies that allow individual households to avoid air pollution. However, to the
extent that these defensive technologies do not allow households to avoid all of the ill
effects, defensive or averting expenditures would represent a lower bound for WTP.

Several recent empirical analyses have used logic along these lines to impute
preferences for environmental quality, including WTP for improved air quality based
on expenditures for face masks (Zhang and Mu, 2018), for averting climate change
(warmer temperatures) based on residential electricity consumption (Deschênes and
Greenstone, 2011), and for higher quality drinking water based on expenditures
for bottled water (Graff Zivin, Neidell, and Schlenker, 2011; Wrenn, Klaiber, and
Jaenicke, 2016). Although the critique we highlight here—that defensive expenditures
may offer additional desirable characteristics to consumers and therefore do not
necessarily represent a lower bound—has been known in the literature since at least
Bartik (1988), these analyses do not explicitly recognize the implications for the use
of averting expenditures. Admittedly, this concern is likely to have a larger impact
in some contexts than others: it is easy to believe some consumers prefer bottled to
tap water for characteristics other than possibly higher quality, for instance, but the
same may not be true for disposable face masks used by healthy individuals.5

Courant and Porter (1981) argued that averting expenditures may not, in fact,
represent a lower bound for WTP for improved environmental quality, depending on
the consumer’s utility function and the properties of the technology by which averting
expenditures achieve their purpose. Bartik (1988) noted several reasons that using
averting expenditures could be problematic. One of these is that the lower bound
argument on averting expenditures does not hold when the expenditure enters the
consumer’s utility function directly (e.g., the case of joint production). For instance,

5In addition, we hope that policymakers are interested in not just the lower bound of WTP but
the true value, which would also include, for instance, health consequences that consumers do not
manage to avoid by defensive expenditures (Graff Zivin, Neidell, and Schlenker, 2011; Reynolds,
Mena, and Gerba, 2008).
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air conditioning produces cooler and drier air, thus averting some of the adverse
consequences of climate change, but can also reduce some indoor air pollutants, and
this latter benefit also enters the utility function directly. Therefore, in cases of joint
production analysts ought to account for how households value “defensive measures
for non-defensive reasons” is necessary in cases of joint production (Bartik, 1988;
Dickie, 2003).

A simple example shows the joint production problem in averting expenditures
applied to the present context. Let the market for bottled water consist of one
product type and one consumer. Suppose the consumer is willing to pay $.99 for
the bottle of water based on the taste, portability, and brand of the good, and the
exogenous price of the good is $1.00. Therefore, the consumer does not purchase
the bottled water. However, once fracking appears in the consumer’s vicinity, the
consumer, concerned about the safety of their own water supply, is willing to pay $.02
to avoid consuming their tap water. Having a new WTP of $1.01 and a constant price
of $1.00, the consumer now purchases the bottled water. In an averting expenditures
framework, a full $1.00 is deemed an averting expense - it was not spent prior to
fracking, but was spent after fracking appears. This does not account for the $.99 of
joint production. Although the compensating variation of the bottled water as an
alternative to consuming tap water possibly affected by fracking is $.02, the “lower
bound” in an averting expenditures framework is $1.00.

A graphical example is shown in Figure 1, where D1 is the initial demand curve for
bottled water, and D2 is the demand after fracking arrives in the vicinity, increasing
individuals’ WTP for bottled water. The reduced form averting expenditures estimate
is price × (Q2 − Q1). However, the dollar equivalent is the area between D1 and
D2 over Qmax. In this example, the reduced form estimate is not the lower bound -
rather, the area between the curves is less than the area below S and between Q2

and Q1.

Figure 1: Simple Example of Structural Versus Reduced Form

Disentangling the change in utility resulting from the arrival of fracking requires
estimating the parameters of the underlying indirect utility functions over heteroge-
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neous consumers (Timmins and Schlenker, 2009), necessitating a structural model of
consumer demand. Estimating on data in multiple markets with multiple consumers
both pre- and post-fracking allows for parameterization of the individual indirect
utility function with respect to fracking. With an indirect utility function including
the marginal utility of income in hand, it is straightforward to calculate the dollar
equivalent of utility changes between a world with and without fracking.

3 Models

3.1 Reduced form model of averting expenditures

We begin with a reduced-form model to estimate households’ change in bottled water
consumption, as well as averting expenditures, in response to the arrival of fracking.
We use a difference-in-differences approach to isolate the effect of fracking from other
demand shifters that vary over space and time.

Muehlenbachs, Spiller, and Timmins (2015) and Wrenn, Klaiber, and Jaenicke
(2016) identified more substantial impacts for households served by private well water
rather than municipal water. Following their approach, we distinguish households’
exposure to fracking as well as our measure of well-dependent exposure to fracking.
As discussed in detail in Section 4 make ref, we cannot directly discern a household’s
exposure to fracking nor its well dependence, but we can calculate the unconditional
probability that a household is exposed to fracking, is well-dependent, or (importantly)
both. We include a rich set of fixed effects to capture time-varying and non-time-
varying unobservables. Our reduced-form specifications are of the general form:

yit = β0 + β1Frackingit + ιi + ωt + γzt + εit (1)

The dependent variable yit is household expenditures on bottled water by week or
total ounces of water purchased by week, and the i and t subscripts denote households
and time, respectively. Frackingit is the unconditional probability of either exposure
to fracking or a probability of well-dependent exposure to fracking, both of which
vary by zip code. ιi is a household fixed effect, ωt is a weekly fixed effect, and γzt
the interaction of zip code status (ever-fracked, adjacent to ever-fracked, and never-
fracked + non-adjacent) and week, which controls flexibly for differential time-varying
unobserved trends common to zip codes based on their fracking type. Our fracking
exposure measures vary at the zipcode-week level, precluding zipcode-specific weekly
fixed effects.

6

3.2 Discrete Choice Structural Model of Consumer Demand

We model consumer choices within a horizontal discrete choice framework common in
the industrial organization and consumer demand literature. The use of a horizontal
model allows for products that are differentiated along multiple dimensions and with

6In the specifications without this household fixed effect, we include a measure of each household’s
“taste” for tap water, using the household-level parameter that is output by the random-parameters
model. do we still? Not at the moment. Maybe post-re-estimation of structural model
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varying characteristics. The discrete choice model used here is a type of random
utility model (RUM) first established by Lancaster (1966) and McFadden et al. (1973).
The advantage of a RUM is that the specification is grounded in economic theory and
is consistent with utility maximization, but also allows for unobserved components.
The use of random terms rationalizes different utility-maximizing choices even when
made by consumers with identical characteristics. The generalized extreme value
(GEV) RUM (Walker and Ben-Akiva, 2002) incorporates complex correlations in
the random component over products and consumer characteristics. For an in-depth
description of discrete choice RUM models, see K. E. Train (2009).

The indirect utility for consumer i gained from consuming bottled water product
j in market t is defined as U(xjt, pjt, τit, 1

F
it ; θ), a function of observed product

characteristics (xjt, exclusive of xoz
j
, the size of bottled water j), price (pjt), individual

consumer characteristics (τit), consumer exposure to fracking, (1Fit taking the value
of 1 when exposed to fracking and zero otherwise), and unknown parameters to be
estimated (θ). Throughout this analysis, a market is defined at the store-week level
and notated as t.

Water consumption has two unique properties that set it apart from traditional
consumer goods. First, humans have a biological requirement to consume water.
Whatever water not consumed through purchases of bottled water (or other beverages)
is largely obtained from the household’s tap. Second, humans have an upper limit on
the quantity of water that can rationally be consumed. Tap water is essentially zero
cost on the margin, but near-infinite quantities of water are rarely consumed. These
properties help to simplify the specification of utility for bottled water purchases.
Let Wi be household i’s total water budget - the biologically-required quantity of
water that must be consumed, which is allowed to vary by household. Because a
household may consume this water either from their tap/well, from bottled water, or
some combination of each, we allow the consumer to obtain different utility from
meeting Wi by consuming tap and bottled water. This indirect utility is specified as:

uijt = αi(yi − pjt) + βTapi (Wi − xozj ) + βBottledi xozj + βCi xj + εijt (2)

Where yi is income, εijt is an unobserved stochastic term distributed Type 1 Extreme
Value. For any choice occasion, a high value of εijt induces greater utility for consumer
i for product j. If we allow the household’s utility per ounce of tap water consumed
to change in the presence of fracking (1Fit), equation 2 becomes:

uijt = αi(yi − pjt) +
(
βTapi + βTFi 1Fit

)
(Wi − xozj ) + βBottledi xozj + βCi xj + εijt

= αi(yi − pjt) +
(
βTapi + βTFi 1Fit

)
Wi +

(
βBottledi − βTapi − βTF1Fit

)
xozj + βCi xj + εijt(3)

We set the outside good of “no purchase” to the utility of consuming entirely
from the tap:

ui0t = αiyi +
(
βTapi + βTFi 1Fit

)
Wi + εi0t

The choice of product j depends only on relative utilities across products j ∈ J .
Income and Wi enter the utility of each choice identically and, because only relative
utilities matter, can be normalized to the utility of the outside good j = 0:
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ũijt = −αipit +
(
βBottledi − βTapi − βTF1Fit

)
xozj + βCi xj + ε̃ijt

The unobserved household water budget, Wi, cancels out in ũijt and only the
net difference in per-ounce preference between tap and bottled remains. Setting
βBTi = βBottledi − βTapi :

ũijt = −αipit + βBTi xozj − βTF1Fitx
oz
j + βCi xj + ε̃ijt (4)

Justin: reinforce how this lets quantity of water purchased drive identification of
utility

Notating the choice outcome as dijt = 1 if product i is chosen and zero otherwise,
the T1EV assumption on εijt yields the following familiar logit probability:

Pr(dijt = 1) = Pr(uijt > uikt ∀k 6= j) =
exp(−αipit + βBTi xozj − βTF1Fitx

oz
j + βCi xj)

1 +
∑J

k=1 exp(−αipit + βBTi xozj − βTF1Fitx
oz
j + βCi xj)

(5)
Each choice occasion occurs within a market t ∈ T . We define a market at the

store-week level and allow the choice set J to vary. In some stores (and in some
weeks), bottled water offerings are sparse and may consist of only a few brand, size,
and packaging choices. In others, choices are rich and varied. We take the consumer’s
choice of store to be exogenous and designate the choice set available in market t as
Jt.

Consumer heterogeneity is captured by (αi, βi). Following Nevo (2000), let Di be
a [d× 1] vector of demographic characteristics (e.g. number of children) and Π be
a [(k + 1)× d] matrix of coefficients which relate the k + 1 taste characteristics to
the d demographic characteristics. In a simple logit, βi is a function of population
mean parameters (α, β), observed characteristics Di, and taste shifting parameters
Π. We further extend heterogeneity into unobserved consumer characteristics by
allowing (αi, βi) to include a stochastic component, vi. The stochastic component
allows for variation in taste beyond that predicted by observed demographics in D.
Furthermore, this component also allows for correlations in the random, unobserved
taste components. Letting Σ indicate the [(k + 1) × (k + 1)] variance-covariance
matrix of consumer tastes, we write tastes (αi, βi) as a random-parameters mixed
logit (K. E. Train, 2009; Nevo, 2000):(

αi
βi

)
=

(
α
β

)
+ ΠDi + Σvi (6)

Where vi is iid and follows some distribution, and Di is observed in our data.
The advantage of the random parameters specification is that it allows unobserved

consumer tastes to be correlated. That is, a consumer who places greater preference
for multi-unit bottled water relative to other consumers with identical demographic
characteristics may also have greater preference for larger total quantities of water
(again, beyond the preference common within the consumer’s demographic cohort).
In this example, Σ has at least one non-zero off-diagonal value which represents the
correlation between these two tastes. Diagonal values in Σ represent the variance of
each taste parameter, and off-diagonals represent the covariance.

It can be shown that this specification can approximate underlying correlations
in the T1EV error terms, εit, over a choice set Jt (K. E. Train, 2009). Accounting for
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these correlations eliminates the assumption of independence of irrelevant alternatives
that is implicit in a simple logit model. That is, by allowing for correlations in εit,
the model no longer imposes the unrealistic cross-product substitution implied by
the simple logit. Instead, if a product is eliminated from the choice set, a consumer
is predicted to substitute into other products with similar product characteristics.

These substitution patterns are important in our context. Total ounces of water
is a key product characteristic. A consumer whose product choice process is nested
may first decide to purchase some quantity of water e.g. 128 ounces (1 gallon).
With this in mind, the consumer finds the water aisle at the supermarket, finds the
128 ounce containers, and makes a choice within the 128 ounce offerings. Absent
a preferred brand, the consumer will most likely remain within the 128 ounce nest,
but will substitute with a similar brand. A nested logit specification can account
for this choice, but at the expense of an interpretable coefficient on xozj , since
this characteristic defines the nest. A random parameters mixed logit with flexible
correlations can produce identical cross-substitution patterns and provides coefficients
that can be used to derive compensating variation.

The presence of fracking is hypothesized to drive increased purchases of bottled
water by decreasing the utility of the outside good. Because consumer choices are
based only on relative utility, a reduction in the utility of the outside good is the
equivalent of an increase in the utility of an inside good. That is, when fracking
arrives in a consumer’s vicinity, 1Fit , any choice of bottled water effectively has the
attribute of “avoiding consuming potentially contaminated tap water”.7 With the
introduction of this attribute, the utility predicted by the product characteristics xozjt
varies over individuals even within the same market and with identical observable
characteristics τit, as the presence of fracking is measured in the consumer’s zip code,
but the market serves consumers from multiple zip codes. We assume the presence
or absence of fracking around the store does not enter the consumer’s utility.

The coefficient of interest is βTFi , which represents the change in taste for the
household’s tap water when it is potentially affected by local fracking. If the arrival of
fracking reduces the household’s utility from consuming tap water, then βTF < 0. The
ratio of this coefficient to αi yields the change in the marginal value of consuming an
ounce of tap water. This measure establishes a water-specific compensating variation
for fracking.

In many consumer demand applications, prices are endogenous to the system,
especially in models which rely on aggregated market-share data (S. Berry, Levinsohn,
and Pakes, 1995). In our application, we rely on individual-level observed purchases
wherein each consumer is a price-taker. Prices are assumed to be exogenous in this
context, though a possible extension of the model would include instrumenting for
prices. Because prices vary at a fine spatial level (store) and temporal scale (week),
instrumenting for endogeneity may prove difficult.

3.2.1 Household-level Heterogeneity for Tap Water

Each household can be assumed to have different, unobserved quality of tap water,
either due to unobserved variation in the quality of public supply, or due to variation

7Note that for the purposes of the random parameters logit, we define “fracking” as the uncon-
ditional probability of a household in the zip code being (i) well-water dependent and (ii) within
500m of a fracked well.
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in well and filter quality for households on well water. If this unobserved taste is truly
random, it will be captured in the taste for larger sizes of bottled water, βBTi , with
greater preference for larger quantities of bottled water when unobserved household
tap water is disliked. However, in a classic omitted variables problem, if a household’s
unobserved taste for its tap water is correlated with the presence of fracking, the
coefficient on the interaction of fracking and size will be biased. This could be of
concern for a variety of reasons. If households located in areas that were formerly
coal-producing regions are more likely to have been exposed to water quality issues
over the last 30 years, they may have a negative preference on their tap water. If
fracking is more likely to occur in areas with greater fossil fuel resources (e.g., due to
existing infrastructure, legal frameworks, experienced workforces, or natural resource
endowments), this would induce a correlation between the treatment (the arrival of
fracking) and negative tastes for tap water, biasing the parameter of interest.

We address this with a household fixed effect for the “outside good.” The concept
mirrors the canonical product-specific constants (or “alternative-specific constants”)
which account for unobserved product-level utility common across all households
(S. T. Berry, 1994). Rather than controlling for common unobserved characteristics,
the aim is to control for household-specific characteristics in taste for the outside
good. Our study represents a novel application of fixed effects at the level of
individual household, without adding restrictive assumptions on these fixed effects.
Goolsbee and Petrin (2004) allow alternative-specific constants to vary over regional
markets, while Petrin and K. Train (2010) use a similar alternative-specific model
but allow the variance of the shocks for the “inside” goods to vary by household
characteristics. Lutzeyer, Phaneuf, and Taylor (n.d.) employ a product-specific
constant that summarizes a group of products, and allow it to vary over latent
class membership of each household. Dube et al. (2002) discuss a household-product
specific constant, but only in passing, and do not estimate a model with this flexibility.
The method we employ here also has useful applications in other problems. For
instance, heterogeneity of preferences for the outside good would be integral to fields
such as health insurance policy choice, where each customer has potentially very
different preferences and tastes for being uninsured.

Rather than parameterize the product-specific constants, we instead include
individual-level product-specific constants. Rewriting (4) and dropping the constant
utility component related to income:

ũijt = δij − αipijt + βBTi xozj − βFT1Fitx
oz
j + βCi xj + ε̃ijt (7)

Estimating (7) would require [(J − 1)×H] parameters in addition to α and β.
This would be computationally intensive. Noting that our goal is to account for
heterogeneity in household preference for the “outside” good, tap water, and noting
that only differences in δj matter, we normalize to δi0.

ũijt = (δij − δi0)− αipijt + βBTi xozj − βFT1Fitx
oz
j + βCi xj + ε̃ijt (8)

Product characteristics of the inside goods are well-defined by the characteristic
space. Thus, we set δij = 0 ∀j ∈ J 6= 0, allow the βi’s to capture preferences for
characteristics of the “inside” goods, and note that setting δij = 0 ∀j 6= 0 is identical
to a model with a constant value of δi0 relative to all δij. It is straightforward to
see that choice probabilities that are identified only up to scale (such as in the logit
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form) are not constant over values of δi0. As δi0 increases, the value of the inside
goods decrease relative to the “outside” good, and the choice probabilities decrease
for the inside goods proportionally.8

Assuming a T1EV distribution for εijt yields the familiar choice probabilities,
indexed by household i.

Pr(dijt = 1) =
exp

(
(δij − δi0)− αipijt + βBTi xozj − βFT1Fitx

oz
j + βCi xj

)∑J
k=0 exp

(
(δik − δi0)− αipikt + βBTi xozj − βFT1Fitx

oz
k + βCi xk

) (9)

We propose a practical means of using estimated results to confirm that household-
level heterogeneity in tastes for tap water is captured - since our expectation is that
the term δi0 represents unobserved tastes over unobserved tap water quality, we
would expect to see values correlated in areas with the same water supplier (for
households on municipal water) or similar geology (for households using well water).
We observe each household’s zip code and will estimate δi0. Therefore, we can map
spatial relationships between δi0 and examine their coincidence with municipal water
supply boundaries or geological maps. A statistical test of spatial clustering also
provides insight into the characteristics captured by the values of δi0.

3.2.2 Identification of Household Heterogeneity

We rely on repeated observations of household purchases over time to identify
household-specific, persistent heterogeneity in taste for tap water by leveraging the
share of non-purchases by household i over the observed time horizon. Identification
in this context is intuitive - if we observe any two observably identical households
where one has a low observed share of non-purchases relative to the other, it must be
the case that the household with a high share of non-purchases has higher preference
for their tap water relative to bottled water. Identification follows from this notion.

3.2.3 Model Specification

In our parsimonious specification we allow utility to vary over price, total ounces
of water, the number of units in the package, and whether a good is a store brand,
a national brand, a flavored brand, or some “other” brand. We specify observable
consumer heterogeneity only with the interaction of the presence of fracking (i.e.,
≥10 wells in the consumer’s zip code) and the use of private well water in that
zip code. The consumer’s traits are constant over all products in J . We therefore
interact the presence of fracking with total ounces of water. The coefficient estimated,
βw,o, is the marginal (dis)utility of the presence of fracking, per ounce of bottled
water. To calculate the dollar equivalent of the change in utility (compensating
variation) associated with a change in fracking from “not present” to “present”, we

8The utilities given by the first two parentheses which differ only in the difference between the
2nd and 3rd entries relative to the 1st, do not result in the same choice probabilities. The second
two parentheses, however, do result in the same choice probabilities. This emphasizes the role of
utility of the outside good (1st) relative to the utility of the inside goods.0

5
7

 6=
0
6
8

 =

−15
7


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take the ratio of βw,o to αi. Since water is a biological requirement, consumers cannot
substitute out of water altogether. Therefore, re-optimization is likely minimal, and
compensating variation is close to the true welfare measure.

3.2.4 Estimation

Estimation of the model is straightforward and follows K. E. Train (2009), using
Maximum Likelihood (ML) to find the parameters θ = {α, β,Π} which maximize
the likelihood of observing the data.

Estimation of the individual alternative-specific constants requires a two-step
process common in the consumer demand literature - given any set of parameter
estimates, θ̂, (S. T. Berry, 1994) calculates a vector of product-specific constants, δ
that generate the observed aggregate market shares. The process iterates between
finding the parameters θr conditional on δr using Maximum Likelihood Estimation,
and updating δr+1 using a contraction mapping algorithm. It is shown in S. T. Berry
(1994) that the following update process converges to the true parameters, θ:

δr+1 = δr + log(S)− log (ŝ(θr(δr), δr))

In our context, however, we are not concerned with product-level unobserved
heterogeneity. Our set of products numbers greater than 1,100, precluding product-
specific constants. Furthermore, for bottled water, unlike vehicles (S. Berry, Levin-
sohn, and Pakes, 1995) and cereal (Nevo, 2001), it is much easier to capture het-
erogeneity in products explicitly in the characteristic space. Instead, we solve our
household-level heterogeneity in unobserved tastes for the “outside good” by con-
tracting out at the household level. Because our data has repeat purchases for each
household, for any given value of θ, we calculate a single value of utility for tap water
for each household which equates the observed share of purchases of the outside
good (which, in our data, is “no purchase” of bottled water) to the predicted share of
purchases for that household. Thus, δ is an H-dimensional vector, where H is the
number of households in our data. The iterative update process follows (S. T. Berry,
1994):

δr+1
h = δrh + log(Sh0)− log (ŝh0(θ

r(δr), δr))

Each update of the household fixed effect, δh, is a function of the prior value
of δh and the share of “outside option” purchases for that household predicted by
the estimate of θ, which is itself a function of δ, the household fixed effects for all
households.

Using simulated data, we tested the application of this model and two-stage
estimator. A description and detailed results are included in Appendix A. Using
simulated data with known correlations between a household’s taste for tap water
and the likelihood of fracking occurring within the household’s zip code, it is shown
that failure to account for time-constant household heterogeneity leads to biased
estimates of the parameter of interest, and that the described model and two-step
estimation correctly estimates all parameters of interest up to scale.
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4 Data

4.1 Nielsen data

Data on household purchases and consumer demographics were drawn from the
Nielsen consumer HomeScan panel dataset, which is provided by the Kilts Center for
Marketing Data at the University of Chicago Booth School of Business. This dataset
records all food and beverage purchases for a panel of nearly 60,000 households across
the US. We focus our study on the years 2006-2014 and in the states of Pennsylvania
and Ohio, representing about 13,000 households, each of which is represented in the
sample for about four years on average. This subset contains purchases that occurred
before the entry of substantial fracking operations (2007 in Pennsylvania and 2011
in Ohio), and continues well into the maturation of fracking.

To facilitate estimation, we first select only households which (1) are located
within a PA or OH zip code that is “fracked” between 2007 and 2014, (2) remain
in the panel for at least 100 weeks, (3) average between one and eight shopping
trips with expenditures greater than $15.00 at a Nielsen-reporting store every four
weeks, and (4) have at least one shopping trip where bottled water is purchased and
at least one shopping trip where bottled water is not purchased. The final criteria
(4) omits households for whom the household utility of the outside good would be
positive or negative infinity and would thus not contribute to the identification of
taste parameters. We omit all trips of less than $15 to avoid counting a brief trip
to the market as a full shopping trip. We also omit households that move across
zip codes during the time period of our analysis, because including them would
complicate the interpretation of the variable measuring the arrival of fracking activity.
In the data, 397 households meet criteria (1), while the remaining criteria yield a
total of 199 households. We randomly draw a sample of 198 households from within
PA and OH, but outside of the “fracked” zip codes. This yields a sample of 397
household panelists.

HomeScan data contains detailed information on all purchases made by panelists.
We use all trips of greater than $15 by all sampled panelists, including those trips
where no purchase of bottled water occurred. For trips in which one or more bottled
water products were purchased, we identify the chosen purchase by UPC. For trips
where more than one bottled water product was purchased, we use only the largest
water product (in total ounces). This is necessary as horizontal models of consumer
demand require only a single, discrete purchase. Trips in which a panelist purchased
two or more water products will appear in our data as only a single purchase,
potentially biasing estimates of consumer demand. However, in all cases, the bias
will be downward in coefficients relating to total ounces of bottled water, including
the estimate of interest.

To control for brand effects, we categorize bottled water purchases into four
categories: store brand, national brand (including Dasani, Nestle, Glaceau Smart
Water, and Aquafina), luxury brands (Evian and Fiji), and flavored waters (including
Propel, Glaceau Vitamin Water, Sobe Life Water, and other flavored brands). This
allows us to parsimoniously control for national brands, and to develop store-level
prices for store brands. The underlying assumption is that consumers may view
national brands in one light (due to advertising campaigns or familiarity with a
brand), but may view store brands as the “same”, even in different stores. That
is, a bottle of Safeway Select water has the same “brand” utility as a bottle of
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Kroeger brand water, but Dasani brand water differs. Our specification captures this
relationship. We categorize all other non-national, non-store brands (e.g. Ozarka,
Deer Park, Arrowhead) as “other”.

Demographic information is drawn from HomeScan data on panelists. We use
demographic household information on household size, race, head-of-household
education, whether or not a household has kids under the age of 18, whether or not
the household lives in a single-family home, the age of the oldest head-of-household,
and household income. For household income, we take the median of the reported
income “bin” to generate a continuous measure of income.

Estimating consumer preferences on observed choices requires knowledge of the
consumer’s choice set. We assume a consumer chooses a market independent from
their demand for bottled water, and generate the consumer’s choice set from the
Nielsen Retail Scanner dataset. This dataset contains sales data for participating
supermarket and similar retailers reported at the end of every week. Therefore,
it contains all products offered which had non-zero sales for a given week, and is
assumed to be an accurate representation of a market (store-week) choice set. These
data are linked to HomeScan purchases by a unique store code and week-end. If a
consumer reported a purchase from a store-week in which the good purchased was
not present in the scanner data (possibly due to discrepancies in the reporting week),
then the panelist’s chosen good is added to the scanner data with a price derived
from the panelist’s reported purchase price. This good is also included in the choice
set of all other panelists purchasing in that (store-week) market. All products are
defined by total ounces, number of containers, whether the product is a single bottle
(e.g. “jug” of water), and brand category - for instance, “96-12-F-Other” is an offering
with a total of 96 ounces of water over 12 bottles in a multi-unit package of “other”
brand (e.g. Ozarka, Deer Park, Arrowhead, etc.). In cases where multiple brands
from the same category are offered, a market sales-weighted price is generated. In
this case, an observed purchase of an “other” brand offering is assumed to be made
at the sales-weighted price, regardless of consumer-reported price.

Many trips and bottled water purchases in the data are made at stores which
do not participate in the scanner data collection program. When no bottled water
is purchased, these trips do not have associated choice sets, and therefore provide
no information on a consumer’s choice of products. These trips are dropped from
the data. For trips with bottled water purchases that occurred at stores which
do participate, but which did not report for a given week, the choice set for that
observed purchase is simply the observed purchase plus the outside good. Under the
assumption that non-participation in the scanner data for a given market (store-week)
is not systematically correlated with consumer choices, the use of a limited choice
set does not bias the results (K. E. Train, 2009).

For all households in PA and OH, the data yields complete demographics on
13,383 panelists over 9 years of participation for a total of 50,678 panel-years. A total
of 1,982,548 trips and choice sets are observed. For the sample used in estimating
the structural model, the data yields 397 panelists over 9 years with a total of 84,046
trips.
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4.2 Wells and municipal water boundaries

We obtain information on unconventional wells from state regulatory agencies in
Pennsylvania (Department of Environmental Protection SPUD report) and Ohio
(Department of Natural Resources). Both states provide information on unconven-
tional wells including location (latitude and longitude) and spud date. Although
recent concern among media and the public has focused on hydraulic fracturing, the
drilling rig is generally the most visible element of onsite infrastructure (outside of
the immediate vicinity of the well pad), so—like Wrenn, Klaiber, and Jaenicke (2016)
and Muehlenbachs, Spiller, and Timmins (2015)—we use the spud date (the start
of drilling operations) as the relevant date rather than the date of the fracturing
operation.9 Fracking usually occurs within a few weeks after drilling commences, so
the two operations would generally occur within the same quarter in any case. We
observe a total of about 11,000 unconventional wells spud by the end of 2014: 1,959
in Ohio and 8,815 in Pennsylvania.

Municipal water service boundaries (Public Water Supplier Service Areas) are
available for Pennsylvania from the Department of Environmental Protection. In
principle, we could overlay the municipal water boundaries with zip code bound-
aries and calculate the ratio of the overlapping area to the total zip code area to
approximate the proportion of households served by municipal water. However, this
method is problematic for two reasons. First, there is no comparable information for
municipal water service areas in Ohio.10 Second, the method implicitly assumes a
uniform distribution of households over both the zip code and the municipal water
service area. Since fracking locations may be negatively correlated with housing
density even within zip code, this assumption is unlikely to hold.

To better measure exposure to fracking and well-water dependence, we use the
Microsoft US Building Footprint database11. This publicly-available dataset uses
semantic segmentation and polygonization to identify and map the footprints of over
10.3 million structures in PA and OH. We filter this data to include only structures
between 900 square feet and 3,500 square feet to avoid counting garages (<900 sq.ft.)
and commercial buildings (>3,500 sq.ft.), and use the centroid of each footprint
polygon as a potential household. In PA, we then overlay the Public Water Supplier
Service Areas to designate each structure as well-dependent or municipally-supplied.
We omit Public Water Suppliers that serve very small populations from a common
well (e.g. mobile home parks) as these shared wells still render the customer well-
dependent. In Ohio, we collect data on domestic water well locations from the Ohio
Division of Water Resources. We then designate each structure in Ohio as being
well-dependent if there are 2 or more wells within 500m. The fraction of structures in
each zip code that are well-dependent forms our measure of unconditional household
well dependence for that zip code.

Nielsen scanner data gives only the household’s zip code of residence which is
insufficient to attach the household’s exact location, the household’s dependence

9In some cases, we do not observe the actual spud date for wells in Ohio and we instead use the
date the drilling permit was issued. Where we do observe both spud date and permit date, we find
that drilling typically occurs within two to three months of receiving the drilling permit.

10This was confirmed by several phone and email conversations with Ohio state officials, as well
as extensive searching online. We are grateful to David Keiser for suggesting, as an alternative, the
use of domestic water well locations.

11https://github.com/microsoft/USBuildingFootprints
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on well-water, and the household’s exposure to fracking. To assess the probability
of being well-dependent and exposed to fracking, we generate an unconditional
probability of well-dependence and fracking exposure over structures. For each
structure in the data and for each week during our study period, we calculate the
density of water wells in the area, designating a structure to be “well-dependent” if
the density of wells in the area exceed 2 per 2km2. Once a structure is exposed,
it remains exposed in this measure, even if additional wells are drilled nearby. We
divide by the total number of structures in the zip code, restricting the measure
to the interval [0, 1]. An unconditional probability of 1 is observed only if (i) every
structure in a zip code is well-dependent, and (ii) every structure has one or more
fracked wells within 500m. The unconditional probability reflects the probability
that a randomly-selected household in that zip code is both well-dependent and
exposed to fracking. Appendix X provides ... We sensitivity-test measures of 250m,
1,000m, and 2,000m as well in an appendix.

4.3 Summary statistics

Sum. Stats needs to be updated once we nail down the of households - we have a
more refined measure of exposure now, so there are more exposed Hh’s

Table 1 provides descriptive statistics about bottled water expenditures and
household characteristics among the 358 households in our main analysis. The mean
bottled water expenditure per quarter is about $170, equating to about $2 per day
per household. In expectation, a household in our subsample is on well water with
probability 0.07. Average income is about $60,000 per year, average household size is
about 2.6 persons, and about three-quarters of the heads of households are married,
while just over one-quarter have children in the home. The sample is largely of
Caucasian descent, more so than the average population in Pennsylvania and Ohio.

Table 1: Descriptive statistics
Variable N Mean Std. Dev. Min Max

Bottled water expenditure 358 169.6 226.4 0 1,335
Well water 358 0.0698 0.0952 0 0.728
Income 358 59.94 34.32 5 225
Household size 358 2.645 1.216 1 6
Married 358 0.763 0.426 0 1
Children 358 0.265 0.442 0 1
Black 358 0.0475 0.213 0 1
Asian 358 0.00559 0.0746 0 1
Bottled water expenditure is in dollars per household per quarter.
Well water is measured as domestic water wells per residential housing structure.

As noted in Section 4.1, our main results are for those households with sufficient
observations such that a household fixed effect can be estimated. Table 2 compares
the expenditures and household characteristics for the subsample of 358 households
to the larger sample of 6,032 households. Compared to the full sample, the subsample
has higher expenditures on bottled water (the mean value is about 22% higher),
and is also more likely to be on well water. The households in the subsample have
generally comparable demographic characteristics, although with a higher proportion

17



of married heads of households, and a lower proportion of African-American heads
of households.

Table 2: Comparing subsample to full sample
Full sample mean Subsample mean Difference

Variable (SD) (SD) in means

Bottled water 139.07 169.558 −30.488∗∗∗
expenditures (228.524) (226.392)

Well Water 0.049 0.070 −0.021∗∗∗
(0.083) (0.095)

Income 60.496 59.937 0.558
(34.597) (34.321)

Household size 2.551 2.645 −0.095
(1.261) (1.216)

Married 0.685 0.763 −0.078∗∗∗
(0.465) (0.426)

Children 0.279 0.265 0.013
(0.448) (0.442)

Black 0.079 0.047 0.031∗∗

(0.269) (0.213)
Asian 0.010 0.006 0.005

(0.101) (0.075)
N = 358 households in subsample, 6,032 households in full sample.
*** p<0.01, ** p<0.05, * p<0.1

5 Results

5.1 Reduced Form Model Results

Tables 3 and 4 provide a summary of the reduced form results using ounces of water
purchased as the dependent variable. Columns (1)-(3) assume a regular panel (filling
in weeks where no shopping trip was recorded with 0 purchases), while Columns
(4)-(6) use actual trips. Column (6) features the richest set of fixed effects. While
using only household fixed effects (Columns (1) and (4)) shows a significant increase
in ounces purchased, including richer fixed effects reduces the magnitude of the point
estimate and its significance. While all coefficients are positive, consistent with an
increase in ounces of water purchased, the effect is not statistically significant.

A similar result is shown in Tables 5 and 6, which show results using dollars
spent per week/trip rather than ounces purchased. Here, purchases are significant at
the 10% level even when controlling for zip status x week fixed effects (Column (6)).
Table 5 shows results using all zip codes, while 6 shows results using only fracked
and adjacent zip codes.

Tables 7 and 8 show results for regressions using the well-dependent fracking
exposure measure. Only results for actual trips are included. Magnitudes are slightly
larger, suggesting well-dependence might play a part in determining household
purchases of bottled water, but results and differences between the well-dependent
measure and the overall measure are not significant.

Table 9 shows results including both fracking measures. This specification
captures differential effects for fracking, which may include localized income effects,
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Table 3: Ounces of water purchased; structure-specific well density

Dependent variable:

Ounces of water purchased

(1) (2) (3) (4) (5) (6)

fracCumExposedUnique 153.785∗∗∗ 97.604∗∗ 60.994 301.184∗∗∗ 183.960∗ 132.640
(42.380) (42.983) (46.039) (113.948) (111.307) (108.640)

Hh FE Yes Yes Yes Yes Yes Yes
Week FE No Yes Yes No Yes Yes
ZipStatus x week FE No No Yes No No Yes
Panel Weekly Weekly Weekly Actual trips Actual trips Actual trips
Zips used All All All All All All
Observations 2,414,730 2,414,730 2,414,730 1,127,716 1,127,716 1,127,716
R2 0.145 0.147 0.147 0.236 0.239 0.239
Adjusted R2 0.141 0.142 0.142 0.227 0.230 0.230

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Errors clustered at zip level

Table 4: Ounces of water purchased; structure-specific well density

Dependent variable:

Ounces of water purchased

(1) (2) (3) (4) (5) (6)

fracCumExposedUnique 153.785∗∗∗ 65.066 60.994 301.184∗∗∗ 148.865 132.640
(42.410) (44.219) (46.104) (114.120) (110.635) (108.997)

Hh FE Yes Yes Yes Yes Yes Yes
Week FE No Yes Yes No Yes Yes
ZipStatus x week FE No No Yes No No Yes
Panel Weekly Weekly Weekly Actual trips Actual trips Actual trips
Zips used Fracked+Adj Fracked+Adj Fracked+Adj Fracked+Adj Fracked+Adj Fracked+Adj
Observations 474,229 474,229 474,229 198,337 198,337 198,337
R2 0.147 0.151 0.151 0.251 0.256 0.258
Adjusted R2 0.143 0.145 0.145 0.241 0.245 0.244

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Errors clustered at zip
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Table 5: Water expenditures; structure-specific well density

Dependent variable:

Dollars spent per week/trip

(1) (2) (3) (4) (5) (6)

fracCumExposedUnique 1.573∗∗∗ 1.272∗∗ 0.752 3.300∗∗ 2.716∗∗ 1.970∗

(0.503) (0.496) (0.478) (1.307) (1.271) (1.171)

Hh FE Yes Yes Yes Yes Yes Yes
Week FE No Yes Yes No Yes Yes
ZipStatus x week FE No No Yes No No Yes
Panel Weekly Weekly Weekly Actual trips Actual trips Actual trips
Zips used All All All All All All
Observations 2,414,730 2,414,730 2,414,730 1,127,716 1,127,716 1,127,716
R2 0.140 0.141 0.142 0.226 0.228 0.229
Adjusted R2 0.136 0.137 0.137 0.217 0.219 0.219

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Errors clustered at zip level

Table 6: Water expenditures; structure-specific well density

Dependent variable:

Dollars spent per week/trip

(1) (2) (3) (4) (5) (6)

fracCumExposedUnique 1.573∗∗∗ 0.867∗ 0.752 3.300∗∗ 2.253∗ 1.970∗

(0.504) (0.483) (0.479) (1.309) (1.233) (1.175)

Hh FE Yes Yes Yes Yes Yes Yes
Week FE No Yes Yes No Yes Yes
ZipStatus x week FE No No Yes No No Yes
Panel Weekly Weekly Weekly Actual trips Actual trips Actual trips
Zips used Fracked+Adj Fracked+Adj Fracked+Adj Fracked+Adj Fracked+Adj Fracked+Adj
Observations 474,229 474,229 474,229 198,337 198,337 198,337
R2 0.145 0.148 0.149 0.247 0.251 0.253
Adjusted R2 0.141 0.143 0.142 0.237 0.240 0.240

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Errors clustered at zip level
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and fracking incident on well-dependence, which captures the effect of fracking unique
to those households dependent on wells for drinking water. Results, though also not
significant, may suggest that well-dependence plays a role in household responses to
fracking.

Table 7: Ounces of water purchased; structure-specific well density with water well
dependence

Dependent variable:

Ounces of water purchased

(1) (2) (3) (4) (5) (6)

w.fracCumExposedUnique 160.192∗∗∗ 72.430 68.152 308.345∗∗ 157.284 139.308
(45.020) (46.678) (48.470) (124.659) (119.978) (118.265)

Hh FE Yes Yes Yes Yes Yes Yes
Week FE No Yes No No Yes No
ZipStatus x week FE No No Yes No No Yes
Panel Weekly Weekly Weekly Actual trips Actual trips Actual trips
Zips used Fracked+Adj Fracked+Adj Fracked+Adj Fracked+Adj Fracked+Adj Fracked+Adj
Observations 474,229 474,229 474,229 198,337 198,337 198,337
R2 0.147 0.151 0.151 0.251 0.256 0.258
Adjusted R2 0.143 0.145 0.145 0.241 0.245 0.244

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Errors clustered at zip level

Table 8: Water expenditures; structure-specific well density with water well depen-
dence

Dependent variable:

Dollars spent per week/trip

(1) (2) (3) (4) (5) (6)

w.fracCumExposedUnique 1.638∗∗∗ 0.933∗ 0.814 3.429∗∗ 2.376∗ 2.070
(0.546) (0.522) (0.516) (1.454) (1.366) (1.306)

Hh FE Yes Yes Yes Yes Yes Yes
Week FE No Yes No No Yes No
ZipStatus x week FE No No Yes No No Yes
Panel Weekly Weekly Weekly Actual trips Actual trips Actual trips
Zips used Fracked+Adj Fracked+Adj Fracked+Adj Fracked+Adj Fracked+Adj Fracked+Adj
Observations 474,229 474,229 474,229 198,337 198,337 198,337
R2 0.145 0.148 0.149 0.247 0.251 0.253
Adjusted R2 0.141 0.143 0.142 0.237 0.240 0.240

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Errors clustered at zip level

calculate results in dollars per household per year to replace this old text: In
all specifications, with regard to the interaction of fracking and well water (i.e.,
the sum of the two coefficients, shown at the bottom of the table), we observe a
positive and significant treatment effect, indicating that the “treatment” of fracking
increased households’ expenditures on bottled water. Our preferred estimate for
averting expenditures attributable to the arrival of fracking is 6, column (6), which
reports the increase in water expenditures per trip when using only households in
fracking and fracking adjacent zip codes. While statistically indistinguishable from
zero at the 5% level, the point estimate suggests a quarterly increase (assuming the
sample average of 3 reported trips per month) of $17.73.
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Table 9: Water purchases; both fracking exposure measures

Dependent variable:

Total ounces purchased Total dollars spent

(1) (2)

fracCumExposedUnique 66.582 0.971
(302.532) (2.853)

w.fracCumExposedUnique 72.122 1.091
(333.344) (3.327)

Hh FE Yes Yes
Week FE Yes Yes
ZipStatus x week FE Yes Yes
Panel Actual trips Actual trips
Zips used Fracked+Adj Fracked+Adj
Observations 198,337 198,337
R2 0.258 0.253
Adjusted R2 0.244 0.240

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Errors clustered at zip level

Qualitatively, these estimates are consistent with those of Wrenn, Klaiber, and
Jaenicke (2016) (WKJ), who also use a reduced-form model with Nielsen Homescan
data to estimate household averting expenditures on bottled water that arise from
the entry of shale gas in Pennsylvania and Ohio. That paper finds annual averting
expenditures ranging from $7.85 to $18.36 per household, depending on the exact
specification, arising from the entry of unconventional wells. Do we need to just
drop this?:::: Our analysis produces a similar estimate, despite obtaining household
expenditure data at a finer geographic resolution (zip code rather than county), which
allows us to assign “treatment” (by fracking) at a substantially finer resolution as
well as condition on a richer set of fixed effects. We also use a more precise definition
of the arrival of fracking: whereas WKJ consider that fracking arrives in 2007 across
all Pennsylvania counties in which there is any fracking activity by 2010 (and uses
Ohio, where fracking had not arrived as of 2010, as a control), we measure shale gas
well activity by quarter, and allow for the possibility that fracking came to different
zip codes at different times. WKJ also do not distinguish between households on
municipal water and well water in most of their specifications, except in one series
where they omit metropolitan area counties and estimate the change in expenditures
on the rest (that is, assuming that all households in non-metro counties are on well
water). Finally, we use a longer time series from the Nielsen HomeScan data: WKJ
use data only from 2005-2010, whereas our panel extends through 2014. In addition
to the foregoing differences of methods and data, which we believe generally represent
improvements, we also introduce a constraint: our subsample of Nielsen households
has higher bottled water expenditures than the average and is more likely to be
serviced by well water (see Table

Regardless of these differences of methods and data between our reduced-form
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estimates and those of WKJ, our primary intent in this paper is to offer a new
perspective on the use of averting expenditures to measure welfare effects, and to
compare the results of structural demand and reduced-form models in the averting
expenditures context. To that end, in the following section we reflect on that
comparison within the context of our own data and methods.

A paragraph, possibly pulled from below, summarizing the averting expenditure
framework.

Point estimates from results in Tables 3 - 9 consistently show an increase in both
expenditures and ounces of water purchased with varying degrees of significance.
Bottled water is unique in that some purchases may be of larger size but be lower total
cost. For instance, a 128 ounce jug of water frequently costs more than a 20 ounce
bottle of water. We estimate a linear probability model for “jug” purchases using
our fracking measures (Table ?? and note that, while the results are not statistically
significant, point estimate of the probability of purchasing a 128 ounce or larger
container of bottled water increases when fracking is introduced. Including both
the fracking and the well-dependent fracking measure allows for a differential effect
on those households who rely on well water. While the difference is not significant,
the point estimates would indicate a stronger effect for well-dependent households.
RBecause consumers can feasibly increase ounces of bottled water consumed while
decreasing expenditures (or vice versa), it is necessary to estimate the underlying
utility of purchase, rather than rely solely on the reduced form estimates.Justin: a
little kludgy, but a good start on justifying the structural when the RF shows only
increase in expenditures.

Table 10: Linear Prob. Model - isJug

Dependent variable:

isJug (purchased 1+ gallon size)

(1) (2) (3)

fracCumExposedUnique 0.267 0.036
(0.234) (0.599)

w.fracCumExposedUnique 0.289 0.252
(0.258) (0.683)

Hh FE Yes Yes Yes
Week FE Yes Yes Yes
ZipStatus x week FE Yes Yes Yes
Panel Actual trips Actual trips Actual trips
Zips used Fr. + Adj. Fr. + Adj. Fr. + Adj.
Observations 198,337 198,337 198,337
R2 0.315 0.315 0.315
Adjusted R2 0.302 0.302 0.302

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Errors clustered at zip level
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5.2 Discrete choice structural model

Results from the random parameters logit, shown in Table 11, are primarily as
expected. All parameters are significant in Model 1, owing largely to the sample
size of 84,046 choice occasions. For all models, the coefficient on price is negative.
The coefficient on total water is positive, while the coefficient on Jug, defined as any
bottled water greater than 72 ounces in a single container, is negative.

Table 11: Bottled Water Expenditures: Random Parameters Logit
Model 1 Model 2

Price (α) −2.603∗∗∗ −3.090∗∗∗
(0.027) (0.029)

Total Water 0.009∗∗∗ 0.011∗∗∗

(0.0003) (0.0003)
Jug −1.417∗∗∗ −1.632∗∗∗

(0.005) (0.005)
Flavored brand 0.020∗∗∗ 0.020∗∗∗

(0.0001) (0.0001)
Luxury brand −0.069∗∗∗ −0.069∗∗∗

(0.003) (0.002)
National brand 0.006∗∗∗ 0.006∗∗∗

(0.00004) (0.00004)
Other brand 0.001∗∗∗ 0.001∗∗∗

(0.00003) (0.00003)
HH size x Total water 0.0005∗∗∗ 0.0005∗∗∗

(0.00005) (0.0001)
Fracking x Total water 0.005∗∗∗ 0.004∗∗∗

(0.0001) (0.0001)
Var(Price) 0.871∗∗∗ 1.333∗∗∗

Var(Total water) 0.0001 0.0001
Cov(Price, Total water) −0.006 −0.008
Household FE X

Log Likelihood −57, 315.15 −55, 091.21
Number of households 397 397
Number of trips 84,046 84,046
*** p<0.01, ** p<0.05, * p<0.1

The per-ounce measure of each category follow reasonable patterns. The baseline
(omitted) category is “store brand”. Flavored water (e.g. Propel) is preferred over
all other categories, followed by the “luxury” category (e.g. Evian), the “national
brand” category (e.g. “Dasani”), and finally the “other” category containing regional
and local brands. Household size positively effects utility when interacted with total
water (larger households prefer larger quantities of water).

The parameter of interest is the interaction of the presence of wells with total
water. Here, “wells” is a binary measure of the presence of greater than 10 fracking
wells in a given zip code for those households that do not have municipal water service.
The effect is small but significant—when fracking is “present” in a consumer’s zip
code, consumers have higher utility per ounce of bottled water. Because utility in a
logit model is relative, this is equivalent to a disamenity for well-water users, per
ounce of tap water consumed.

A simple compensating variation measure can be calculated from the results. To
find the dollar equivalent of the utility lost per ounce of water consumed as a result
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of the arrival of fracking, we take the ratio βw,o

βp . For Model 1 (without household
fixed effects) the compensating variation measure is -$0.0016, and for Model 2 (with
household fixed effects) it is -$0.0023. Because we do not observe in our data increases
in the consumption of water-based products such as soda or (not-from-concentrate)
juice, we consider this measure to be biased downwards.

5.3 Discussion

In an averting expenditures framework, the reduced form model seeks to calculate
the lower bound on the perceived disamenity associated with tap water consumption
in the presence of fracking. The preferred model (column (4) of Table ??) estimates
a per-household disamenity value of $56.89 per quarter. The core critique in Section
2.2 notes that the lower bound argument does not hold when the good enters the
consumer’s utility function directly. The structural model in Section 5.2 yields a dollar-
denominated increase in utility from consuming bottled water when fracking is present
above and beyond the other desirable traits of bottled water—the characteristics of
bottled water that would enter the consumer’s utility directly—an amount equal to
$0.00165 per ounce in the model without household fixed effects, and $0.0023 per
ounce in the model with household fixed effects.

Suppose that the marginal utility of bottled water consumption is constant at
$0.00235 per ounce. To make a meaningful comparison with the reduced-form
estimate from Table ??, we wish to multiply this per-ounce utility by some quantity
of water consumed. One approach would be to multiply the per-ounce indirect utility
by total household water consumption (e.g., 32 ounces per person per day) rather
than observed bottled water consumption. Assuming a per-person consumption
of 32 ounces of water per day, and 2.6 persons per household on average, the size
of the compensating variation or disamenity-of-fracking value would be $17.19 per
household per quarter. (The comparable calculation using the value calculated
without household fixed effects is $12.14 per household per quarter.) Obviously,
the calculated value is sensitive to the per-person consumption estimate; if we
assume instead a per-person consumption of 64 ounces per day, we would calculate a
compensating variation that is twice as high.

The compensating variation owing to the arrival of fracking that we estimate from
the random parameters model, $17.19 per household per quarter, amounts to just
30% of the increase in expenditures we estimate in the reduced-form context ($56.89).
In the models without household fixed effects the difference is even starker: the
compensating variation of $12.14 per household per quarter associated with fracking
amounts to just 8% of the increase in expenditures we estimate using the reduced-form
model ($146.70). These results suggest that other desirable attributes associated
with bottled water, such as taste and portability, account for a relatively substantial
portion of observed increased expenditures, at least in the case of households that
experienced a rise in fracking activity in these states. This result has potentially
broader implications for use of reduced-form models to measure averting expenditures
on defensive goods, especially in contexts where joint production could be substantial.

5.3.1 Unobserved household heterogeneity

The household fixed effects display a spatially autocorrelated pattern consistent with
geographic patterns in tap water quality. Figure 5.3.1 shows the mean magnitude of
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Figure 2: Household-specific fixed effects on outside option by zip code. Value reflects
household preferences for own tap water that do not vary over time. In zip codes with
multiple households, the mean is displayed. Clustering by value is visible, indicating
spatial autocorrelation in household preference for outside option, possibly due to
local water quality. Moran’s I, a distance-weighted correlation statistic, is positive,
indicating spatial autocorrelation, and is significant at the .01 level.

the fixed effects for each zip code in the sample. The northern portion of Pennsylvania
generally has greater negative values relative to the southern portion, indicating a
lower preference for tap water in that area. The Marcellus Shale underlies the north
and western portion of the state, as well as the eastern portion of Ohio. These areas
appear to have a negative trend in the household fixed effects. This is consistent
with a persistent household perception of lower water quality in areas that have
been historically associated with conventional gas, oil, and coal extraction. Omitting
this time-invariant effect would introduce an omitted variables bias if historic gas
and coal fields are more likely to be the site of modern fracking operations. In this
situation, the omitted variable, time-invariant disamenity of own tap water, would
confound identification of the effect of fracking. To test for spatial autocorrelation
(e.g. clustering), we calculate a Moran’s I (Moran, 1950). The test statistic is
positive, indicating spatial autocorrelation, and significant at the .01 level.
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5.3.2 Limitations of the structural method

To the extent that economists use averting expenditures to measure WTP for goods
and services that are difficult to exchange in markets, it is useful to consider other ways
(besides joint production) in which reduced-form measures of averting expenditures
provide only partial insight on such WTP. Assuming away joint production (as many
studies of averting expenditures implicitly do), averting expenditures on bottled water
represent a lower bound on WTP for three reasons. First, such studies typically focus
on one type of defensive product. For instance, our study (like most that analyze
WTP for improved water quality) focuses on bottled water purchases, and does not
include households’ expenditures on other technologies such as home water filters or
custom delivery of large water containers. Second, the averting expenditures method
our analysis does not include damages that households incur from consumption of
the outside good. Finally, the reduced-form framework does not allow observation
of WTP in excess of the pure expenditure. In Figure 1, this is the area under the
curve D2 and above the price level (from Q1 to Q2). However, the structural demand
estimate does allow us to estimate this component. Thus, the structural approach
dominates a reduced-form approach, regardless of whether there is joint production.
The structural model provides a superior estimate of WTP by incorporating concerns
about joint production and issues that arise from expenditure being a lower bound
for WTP.

6 Conclusions
Hydraulic fracturing brings with it a variety of economic impacts that may confound
economic assessments of its impacts. In particular, while fracking activity stresses
public infrastructure, brings an influx of potentially temporary workers, and draws
significant amounts of water which is then returned as potentially contaminated
process water, it also brings with lease and royalty payments which may enter
the local economy. Hedonic studies have been used to assess the “total basket” of
amenities, considering “presence of fracking” to be the change in amenities, and
examining the change in home sale values. Because the purchase of a home includes
the basket of local amenities (parks, schools, roads, water quality, etc.), changes in
home values associated with the presence of fracking will reflect the overall economic
impact of fracking (Muehlenbachs, Spiller, and Timmins, 2015). This paper examines
a component of that basket—the perceived quality of drinking water—in more detail.

The per-household, per-quarter disamenity estimated in our structural model
yields a value of $17.19, based on an assumption of 32 ounces of water consumed per
day, an amount equal to just 20% of the disamenity estimated by our reduced-form
approach. This suggests that joint production may represent a substantial component
of averting expenditures, and provides an illustration of how structural demand
models represent a considerable improvement in the use of averting expenditures to
measure WTP for higher environmental quality.
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A Household Heterogeneity Simulation
A search of the literature yielded no examples of a household-specific fixed effect
being implemented in a discrete choice RUM. Simulations were performed to observe
the convergence of the household-level fixed effects. Results show (1) convergence to
the true parameters up to scale when household-level fixed effects are included, and
(2) biased estimates when naively estimated using a traditional multinomial logit.

Data was simulated using the following parameters:

Variable Symbol Value
Households H 400

Choice occasions T 40
Choice occasions with fracking T frack 10

Number of products J 5
Number of observed characteristics K 5

Variance of logistic preference shock (εj) σε 1
Tapwater taste (δ0 ∼ N(µδ, σδ, ιδ)) parameters

Mean µδ 2
Variance σδ 3
Skew ιδ 2

Data was drawn from these parameters and 400×40 = 1, 600 choice occasions were
simulated. K − 1 observable product characteristics remained constant throughout
the simulated dataset, but Kprice was drawn from a random uniform distribution
centered on a vector of mean prices based on the attributes (e.g. larger, luxury
products had a higher mean price) with a range of plus or minus $0.50. Price was
not correlated with any unobserved household or product characteristics.

Figure 3 shows the ratio of the parameter estimates to the true parameters at
each update of δ. The red line is the first parameter estimate from the Maximum
Likelihood stage, and is the MLE estimate of the parameters without household-
specific tastes for tap water. Each progressively-darker gray line is an iteration of the
two stages, and the blue line is the final ratio of the parameter estimates to the true
parameters. Because discrete choice models only identify to scale, a constant scaling
is expected. A “perfect” estimate, then, results in a flat, horizontal line. As expected,
the coefficient on the interaction between product size and the presence of fracking,
βsizeFracking is biased towards zero before the first iteration of the two-step process.

The ratio of the parameter of interest to the parameter on price is the estimated
willingness to pay. Fig 4 shows the ratio of this estimated ratio (from β̂) to the
true ratio. The estimated ratio converges to a constant value near unity within 30
iterations.
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Figure 3: Convergence in Simulated Data with Household-level Tap Water Taste
Heterogeneity
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Figure 4: Convergence of Willingness to Pay Estimate in Simulated Data with
Household-level Tap Water taste Heterogeneity

0 50 100 150

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

1.
05

Iteration

ra
tio

31


	Introduction
	Background
	Hydraulic Fracturing
	Welfare Effects and Averting Behavior

	Models
	Reduced form model of averting expenditures
	Discrete Choice Structural Model of Consumer Demand
	Household-level Heterogeneity for Tap Water
	Identification of Household Heterogeneity
	Model Specification
	Estimation


	Data
	Nielsen data
	Wells and municipal water boundaries
	Summary statistics

	Results
	Reduced Form Model Results
	Discrete choice structural model
	Discussion
	Unobserved household heterogeneity
	Limitations of the structural method


	Conclusions
	Household Heterogeneity Simulation

