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Abstract

Individuals trade present for future consumption across a range of economic behaviors,

and this tradeoff may differ across socioeconomic groups. To assess these tradeoffs,

we estimate a dynamic model of residential solar adoption and system sizing using

household-level data that offer plausibly exogenous variation in the future benefits

from adopting relative to upfront costs. We find implicit discount rates of 17.2%,

15.6%, and 10.9% for low-, medium-, and high-wealth households. This heterogeneity

remarkably persists for those with high credit scores. Counterfactual simulations

demonstrate opportunities to reduce the regressivity of solar adoption, increase policy

cost-effectiveness, and improve welfare for low-wealth households.
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1 Introduction

The rate at which individuals appear to trade present consumption for future consumption

is important across a range of economic behaviors, including savings, human capital forma-

tion, and investment in personal health. Understanding this tradeoff is critical for public

policy, which often subjects individual actions and behaviors to incentives or restrictions to

achieve long-run objectives that are deemed socially desirable. Laboratory experiments with

hypothetical choices to examine intertemporal decision-making are numerous, but credible

quasi-experimental estimates of implicit discount rates revealed by market decisions are

relatively rare (Hausman, 1979; Lawrance, 1991; Warner and Pleeter, 2001; Bollinger, 2015;

de Groote and Verboven, 2019). Evidence on how discount rates vary across policy-relevant

sub-populations is even scarcer. As noted by Barsky et al. (1997), econometric estimation of

preference parameters, including time preferences, may be “particularly inadequate” when

heterogeneity of preferences in the population is important, due to identification issues.

This study examines how consumers of different wealth groups trade off present for future

consumption in realized decisions on the adoption of rooftop solar photovoltaic (PV) systems.

We find economically meaningful differences in implicit discount rates between low- and

high-wealth homeowners: 17.2% versus 10.9%.1 This implies that high-wealth households

implicitly value the same stream of solar benefits over time approximately 50% more than

low-wealth households.

These results are important for policy. There has been substantial criticism of past solar

policies by economists for primarily benefiting high-wealth households and shifting electricity

system fixed costs from relatively wealthy households who are more likely to adopt rooftop

solar to relatively poor households who are less likely to adopt (Borenstein and Davis, 2016,

2024). Net Energy Metering (NEM) is a very common policy that has been used at some

point by 43 states in the United States. Under the standard NEM policy, solar adopters

can export excess solar generation above consumption to the grid and receive credit for it in

future months, thus earning compensation at the retail rate of electricity (usually up to the

consumer’s total annual consumption). The value of this incentive to consumers critically

depends on their implicit discount rates, which may vary across wealth groups.2 Despite the

prevalence of NEM policies, we are not aware of any previous research that has evaluated

their effectiveness in spurring additional solar PV capacity across wealth levels as a result of

differences in discounting, or their effect on consumer welfare.

1We refer to the estimated discount rates as ‘implicit’ because they are the rates that rationalize observed
decisions.

2Houde and Myers (2021) provide evidence that in the realm of household appliances, higher income
consumers weight operating costs more than purchase price.
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Our work also relates to questions about the viability of traditional utility models as solar

market share increases. If there is more distributed solar generation and the fixed costs of

the grid are spread across fewer non-solar customers, this could lead to higher electricity

rates and possibly induce further grid defections that could yield a “utility death spiral”

(Kind 2013). In response to concerns about equity and the long-run viability of traditional

utility business models, many states across the United States are currently reducing their

compensation for excess solar electricity fed into the grid. For example, in 2023, California

implemented “NEM 3.0,” which reduced compensation for excess solar electricity by about

75%, a drastic change in the long-term benefit of rooftop solar. The effects of such a policy

could differ across the population if there is heterogeneity in intertemporal tradeoffs.

In this paper, we employ rich and unique micro-data on rooftop solar panel adoption,

and on the expected returns from such adoption. Adopting rooftop solar entails an upfront

cost to install panels that generate future electricity cost savings. These savings depend

on the system characteristics, sunlight, and the compensation rate for excess generation.

Using proprietary Google Sunroof data for rooftop-specific expected electricity generation of

optimal solar installations for every home in select California zip codes along climate borders,

in conjunction with household utility bills, we calculate the value of the flow of benefits of

both purchasing and leasing solar as a function of the implicit discount rate for the household.

In this calculation, we account for the household’s observed electricity consumption and the

optimal installation size. We combine data on these variables with observed solar adoptions

and household-specific demographic information to estimate our structural model.

In our study, heterogeneous implicit discount rates and marginal utility of income pa-

rameters are identified from sizable differences in electricity rates across administratively-

determined climate zones within the state and plausibly exogenous household-specific variation

in future electricity bill savings from adopting solar due to differences in solar irradiance

(as a function of rooftop characteristics, such as pitch, orientation, and shading from trees

and structures). The identification of discount rates is challenging and requires some ex-

ogenous source of variation, such as an exclusion restriction (Magnac and Thesmar, 2002).

In previous work, the econometric identification of discount rates has often relied heavily

on strong functional assumptions.3 Some papers utilize arguably exogenous changes to the

environment, such as the entry of a new choice option (Warner and Pleeter, 2001) or policy

change (Bollinger, 2015; de Groote and Verboven, 2019). These approaches using time-series

variation typically involve strong assumptions about agent expectations in order to leverage

3For example, Hausman (1979) assume an exact lifetime for air conditioners, no deterioration over time,
no differential in expected inflation rates of appliance prices and electricity, and constant utility over time for
air conditioning. Our assumptions are weaker than these and we perform robustness checks over them.
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such variation. In contrast, our approach identifies implicit discount rates from cross-sectional

variation at the household level in the relative value of the upfront costs of installing solar and

the long-term benefits, leaving us less dependent on assumptions about unobserved consumer

expectations for identification. This is more similar to the strategy employed by Koster and

Pinchbeck (2022), who leverage differences in property tax rates and house costs for homes

similar on all other dimensions to estimate discount rates.

Our estimation approach uses conditional choice probabilities (CCPs) and generally

follows Arcidiacono and Miller (2011). However, our utility bill data is anonymized, so we

cannot match each non-solar household to a specific utility bill. This leads to an econometric

challenge akin to the challenge of incorporating micro-data into BLP estimation (Berry et

al., 1995; Conlon and Gortmaker, 2023), due to the fact that household-level likelihoods

are no longer independent within zip code.4 We overcome these challenges by integrating

over the observed zip-code empirical distribution of household electricity consumption with

replacement.

Based on our estimation results, we run two counterfactuals that change the solar policy

while holding the rest of the electricity rate structure fixed. In our first counterfactual, we

find that if the NEM compensation is substantially reduced to the average avoided cost of

solar generation in California and half of the generated solar electricity is exported to the

grid, then solar adoption for both wealth groups would decrease by 9%. Yet the consumer

surplus reduction would be over six times higher for high wealth households, highlighting

how much more high-wealth households value NEM benefits. Such a policy would also reduce

environmental benefits but would substantially decrease federal tax credit outlays and benefit

electric utilities.

In a second counterfactual, we again replace NEM with a scheme that compensates excess

solar generation at the avoided cost. We take approximately half of the funding that would

have been used for NEM payments and allocate that funding to upfront subsidies (split

between a per-W and per-installation subsidy), such that the total number of adoptions for

high-wealth households are roughly the same as under the baseline. The result is a very

different distribution of installations. Under this counterfactual, low-wealth installations

increase by 27% (overall installations increase by 11%, although they are smaller on average,

leading to an increase in installed capacity of 18%). This leads to a 30% decrease in consumer

surplus for high-wealth households and a 17% increase for low-wealth households. We

calculate the marginal benefit of public funds (Hahn et al., 2024) of the additional upfront

4To see why, consider that if one specific household is a high-consumption household, this would lower the
probability that the other households in a zip code can also be a high-consumption household because the
aggregation of all household consumption within a zip code must equal the observed empirical distribution.
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subsidies in this counterfactual to be less than one for high- and medium-wealth households,

but greater than one (1.23) for low-wealth households. Values greater than one indicate that

the willingness to pay of the policy exceeds the government expenditure. This finding implies

that subsidies targeted to poorer households not only address distributional equity concerns

but are also likely more economically efficient than uniform subsidies.

Our estimates provide credible evidence that individual implicit discount rates that are

rationalized by solar adoption decisions exceed common market rates and that these vary

by wealth in ways that have important implications for economists and policymakers. This

finding of relatively high implicit discount rates accords with results in the ‘energy-efficiency

paradox’ literature of undervaluation of future energy savings in energy efficiency purchases

(Metcalf and Hassett, 1999; Allcott and Greenstone, 2012; Gerarden et al., 2017; Gillingham

and Palmer, 2014; Gillingham and Myers, 2025).

One novel aspect of our study is that we obtain household-level credit score data to see if

credit helps to explain the differences in discount rates; we find households with near-prime

or sub-prime credit have higher implicit discount rates (29.4% and 66.2% for medium- and

low-wealth households, respectively), demonstrating the likely role of borrowing costs or credit

limits in the purchase decision. This is consistent with work showing that credit constraints

are important in the adoption of energy-efficient stoves by low-income households in Kenya

(Berkouwer and Dean, 2022). However, for those with good credit, the ratio of the implicit

discount rates across wealth groups does not change with the inclusion of the household

credit score data, suggesting that other mechanisms, such as behavioral anomalies, may also

be playing a key role.

Our findings are new to the small but growing literature on residential solar adoption

(Kirkpatrick and Bennear, 2014; Hughes and Podolefsky, 2015; Pless and van Benthem, 2016;

Gillingham and Tsvetanov, 2017; Feger et al., 2022). One major recent line of solar research

is on spatial misallocation of solar (Sexton et al., 2021; Lamp and Samano, 2023; Colas and

Saulnier, 2024). Our results highlight a structural inequity in existing solar policy, with a

misallocation between upfront subsidies and NEM benefits. We show that standard NEM is a

regressive policy and that a switch to upfront subsidies can not only improve cost-effectiveness

but also improve distributional equity.
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2 Background

2.1 Solar Policy

The adoption of rooftop solar PV has benefited from billions of dollars of subsidies. The

most prominent subsidies in the United States over the past two decades have been the

many state-level upfront adoption rebates, such as the California Solar Initiative program,

the federal investment tax credit (ITC), and NEM. Elsewhere in the world, popular policies

include NEM and feed-in tariffs, in which solar adopters send electricity generated from

solar to the grid and are compensated at a price that is usually above the retail electricity

rate. Net-billing tariffs (NBT) refer to mechanisms in which excess solar generation above

consumption that is exported to the grid is compensated at some predetermined rate that

is usually below the retail electricity rate. Under NBT, consumers receive a ‘net bill’ each

month and credits for more generation than consumption in each month cannot roll over, as

they can under NEM. California’s new “NEM 3.0” is a version of NBT, with some additional

elements to encourage energy storage. In recent years, most U.S. state rebate programs have

been discontinued, but the federal ITC is still in place and NEM is still widely used across

the country, despite past and current debates about phasing out both types of incentives.5

From a social welfare perspective, policies to encourage adoption of solar can be motivated

by innovation market failures, such as learning-by-doing, or as a second-best approach to

addressing uninternalized environmental externalities. One key distinction between the

different types of solar subsidies is whether they are upfront adoption subsidies, such as tax

credits or rebates, or flow subsidies, such as NEM and feed-in tariffs. Typically, a subsidy

on the extensive (adoption) margin would sacrifice efficiency on the intensive (generation)

margin, as there would be less incentive to improve the productivity of generation and

undertake maintenance to ensure generation (Aldy et al., 2023). However, in the case of

solar panels, there is very little that can be done to improve efficiency of already-installed

rooftop systems and the systems rarely require routine maintenance.6 Therefore, the decision

to adopt solar is made as a “set it and forget it” decision requiring only consideration of the

up-front investment and the (constant) flow benefits for the next 25 years, which critically

depend on the household implicit discount rate.

The existing literature on the cost-effectiveness of solar subsidies has generally found

relatively high costs from upfront subsidies due to free-riders who would have installed solar

anyway without the subsidies (Hughes and Podolefsky, 2015; Gillingham and Tsvetanov,

2014). However, it might still be possible to justify at least some rooftop solar subsidies on

5The 2025 federal S“One Big Beautiful Bill” has provisions to phase out the ITC.
6See for instance https://www.energysage.com/solar/101/solar-panel-maintenance/.
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economic-efficiency grounds based on uninternalized social costs of greenhouse gas emissions

(Rennert et al., 2022), uninternalized local air pollution emissions (Sexton et al., 2021), and

learning-by-doing externalities (Bollinger and Gillingham, 2023). Yet without careful policy

design, the distributional consequences may be perverse, especially in a state like California

that has increasing block pricing for electricity, so that those who consume more (usually

wealthier households) pay higher rates and thus benefit more from adding solar.

2.2 Implicit Discount Rates Across Wealth Groups

This paper focuses on estimating implicit discount rates across wealth groups because they

are a crucial ingredient for comparing the welfare impacts of subsidy policies that have

different time profiles of benefits. However, while implicit discount rates characterize the

realized intertemporal tradeoff implied by actual decisions, they may capture more than just

the pure rate of time preference of different groups. Differences in lending and borrowing

costs, the marginal propensity to consume, beliefs, and risk aversion can all also help explain

the tradeoffs observed by economists either in the laboratory or in the field (Cohen et al.,

2020). Chatterjee and Eyigungor (2024) show that discount factor heterogeneity is needed

to explain patterns in credit card usage and default, and Chatterjee et al. (2023) show that

such heterogeneity is needed to explain the evolution of credit scores.

Coller and Williams (1999) show that the consumer’s real rate of return should equal their

discount rate only if it lies between their borrowing and lending costs, and thus differences in

borrowing rates or binding credit constraints could lead to higher implicit discount rates for

lower-wealth households than others (Allcott et al., 2015). We explore this in our setting by

examining how our results differ after accounting for the household’s credit score. Wealthier

consumers may also have a greater ability to smooth consumption due to greater liquidity,

which could also lead to observed intertemporal tradeoffs differing by wealth (Cubitt and

Read, 2007). This may be less relevant in our setting, as the flow subsidies we are examining

tend to be smooth over time.

It is possible that high-wealth households have different beliefs than low-wealth households

about the life of the panel, future electricity costs, how long they will be in their home,

and whether the solar panel will be capitalized in the transaction price if they sell. We will

discuss each of these and provide evidence suggesting that they are not likely to explain our

heterogeneity results. Finally, risk aversion may differ across wealth groups, which have very

different levels of consumption. Cohen et al. (2020) show that in a simple two-period tradeoff,

risk aversion scales down the pure rate of time preference from the estimated “implicit”
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discount rate rationalized by decisions. We allow for this by modeling heterogeneity in the

marginal utility of income across wealth groups.

3 Data

In order to identify heterogeneity in implicit discount rates across wealth groups without

strict distributional assumptions, it is essential to have rich household-level data on the main

drivers of solar adoption. To this end, we assemble a detailed household-level data set on

solar adoptions, home characteristics, and household characteristics covering the period 2014

to 2016. Our research design focuses on adjacent zip codes in California that face different

electricity rates due to being categorized into different climate zones. We identify 28 zip

codes in Pacific Gas & Electric (PG&E) territory that are entirely contained in a single

climate zone and have an adjacent zip code in a different climate zone. Figure 1 illustrates

the zip codes included in our study, all of which are in the greater San Francisco Bay Area of

California.

3.1 Data sources

Our first data source contains address-level data on home characteristics from CoreLogic. We

focus on all single-family detached owner-occupied non-mobile home residences that were

built before 2014 in the 28 zip codes. The data include the year built, heated square footage,

and number of stories. This provides the set of potentially adopting households.

Our second data source is publicly-available voter registration data from the California

Secretary of State. For each address, we categorize households to be Democrat, Republican,

or mixed.7 We merge in household characteristics data from InfoUSA, including the number

of children, race, home-ownership status, the length of time at the residence, the number of

open lines of credit, and the calculated wealth of the household (inclusive of home equity).

We also use credit score data from Experian. If an address has multiple households, we use

the data from the household that occupied the home for the plurality of our study period.

Our installation-level data set of solar adopters is a restricted-access version of the

Lawrence Berkeley National Laboratories “Tracking the Sun” (TTS) database. It contains

the address of the installation, application date, installation date, system size (in watts),

and total system cost exclusive of subsidies and tax credits. Our study window is after the

California Solar Initiative (CSI) subsidy period had ended. We match the solar adopter data

7We identify the household as registered Democrat if and only if both of the two longest-registered 2014
voters are registered Democrats or are registered with the Green Party.
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Figure 1: Sample zip codes. Zip codes in PG&E service territory that border a CEC
climate zone boundary. Climate zones determine the electricity pricing scheme each zip code
faces. Adjacent zip codes along a boundary face a similar climate but a different average
value of offset electricity. Colors indicate particular climate zone boundaries, with the shading
illustrating the side of the boundary the zip code is on.
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to the data on potential adopters with a 96% success rate, and we remove any households

that adopted prior to 2014. The final sample contains 7,244 solar adoptions during the study

period out of a total of 183,667 potential adopting households. Finally, we bring in data on

the amount of sun reaching each solar rooftop from Google Sunroof and data on household

electricity consumption from PG&E. To help provide interpretability for our wealth results,

we merge in credit data from Experian.8 Data construction details are in Appendix A.

Table 1: Sample Summary Statistics

All Adopters Non-adopters

Mean Std. dev Mean Std. dev Mean Std. dev

Variables (N=183,667 households)

Wealth ($1,000’s) 2500.09 1017.81 2624.27 909.25 2494.99 1021.70

1(Low wealth bin) 0.33 0.47 0.24 0.43 0.34 0.47

1(Medium wealth bin) 0.33 0.47 0.42 0.49 0.33 0.47

1(High wealth bin) 0.33 0.47 0.34 0.47 0.33 0.47

Lines of credit (count) 0.67 1.41 0.75 1.53 0.66 1.40

1(Children present) 0.32 0.47 0.41 0.49 0.31 0.46

Length of residence (years) 15.56 12.26 13.42 10.65 15.65 12.31

Square Footage (1,000 sq.ft.) 1.79 0.75 2.16 0.81 1.77 0.75

1(Single story) 0.32 0.47 0.45 0.50 0.32 0.47

1(Dem voter registration) 0.43 0.49 0.45 0.50 0.43 0.49

1(Possible non-owner) 0.18 0.39 0.06 0.24 0.19 0.39

Adopted System Characteristics (N=7,244)

System Size (kW) 5.29 2.36

Installation Cost ($1,000’s) 24.23 12.6

Low-Wealth Adopter Sys. Size (kW) 4.91 2.23

Med-Wealth Adopter Sys. Size (kW) 5.51 2.34

High-Wealth Adopter Sys. Size (kW) 5.29 2.45

1(Leased system) 0.45 0.5

Table 1 shows summary statistics for the homes and households in the sample by adopter

status, where we divide the sample into three wealth groups.9 Solar adopters tend to be

middle- and high-wealth, are more likely to have children, and have larger homes. Adopters

are only slightly more likely to be all-Democratic in voter registration, and have a shorter

length of residence.

8Experian performed the matching based on names and addresses, reaching a match rate of 63%. Experian
data is further discussed in Appendix J.1

9The threshold between low and middle wealth is $1.96 million and between middle and high wealth is
$2.92 million, yielding 3 equal sized wealth bins. Wealth is inclusive of the value of the home.
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(a) Google Project Sunroof display (b) Solar generation profiles

Figure 2: Solar generation profiles for four selected rooftops on a single block in Solano
County, California. Panel (a) shows the Google Sunroof imagry, while panel (b) shows the
marginal generation for each household per panel on the vertical axis and the number of panels
on the horizontal axis. Contrast dashed green (house D), which exhibits low irradiance (300
kWh/yr) for the first panel and a slow decline up to 15 panels followed by a leveling off, with
gray (house A), which exhibits strong irradiance for the first 20 panels (400 kWh/yr). Dashed
blue (house C) shows high initial irradiance (365 kWh/yr) but a rapid decline corresponding
to the multifaceted roof line.

3.2 Solar Irradiance and Electricity Consumption

Some of the relationships we observe in the summary statistics may be capturing heterogeneity

in the pecuniary value of adopting solar. To explicitly calculate the monetary benefit from

adopting solar, we need to know how much solar electricity would be generated for any given

installation on any given house. Thus, for every house in the base data, we leverage data on

the ‘effective’ solar irradiance that reaches each rooftop. By definition, solar irradiance is the

amount of sunlight that hits the surface of the earth and is a function of climate. It varies

considerably across the United States and around the world, and even within states, e.g.,

across zip codes. Effective irradiance in our data also accounts for the obstruction of solar

irradiance by surrounding structures and vegetation, as well as panel orientations and pitches

that may fail to capture all irradiance due to rooftop characteristics. Effective irradiance

provides micro-level variation in the electricity generation of a unit of solar capacity, namely

from household to household within neighborhoods. Moreover, for a given home, effective

irradiance varies across the rooftop, with some portions of the rooftop receiving more sunlight

than others.

Figure 2 shows an example of the effective irradiance of four homes and what it means

for solar generation. Panel (a) shows Google Sunroof imagery of the homes as modeled by

Google based on satellite imagery. Panel (b) shows how expected solar generation declines
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with more panels due to reduced irradiance.10 Google Sunroof predicts electricity bill savings

from adopting solar for each rooftop based on the irradiance profile, electricity rate, and

the optimal size as a function of household electricity consumption and utility rate. Homes

located in deep shade or with a roof profile that does not angle southward need more panels

to generate a given amount of electricity, increasing the cost per kWh to that household.

This and the utility rate borders provide our two main sources of identifying variation.

The value of adopting solar depends on household electricity consumption in our setting

for two reasons. First, there is minimal compensation for generation above the household’s

annual consumption.11 Second, there is an increasing tiered electricity rate structure, so

the marginal value of generation to the consumer is greater if it reduces a high-consuming

household’s electricity imports from the grid. Because of the importance of this rate structure,

we obtain data on annual electricity consumption for all customers who reside in any of the

28 PG&E border zip codes in our sample. The timing of solar adoption in the administrative

data enable us to match solar adopters with their energy consumption data. For non-adopting

households, we only know their zip code. Further details about the consumption data are in

Appendix A, as is information about PG&E electricity rates.

We can calculate the marginal levelized cost per kilowatt-hour (kWh) for solar generation

by discounting the monetary value of the flow of generation over time.12 This marginal cost

per kWh is increasing with more solar panels due to the declining marginal generation with

more panels (from reduced irradiance due to the best locations being taken first). Figure 3

plots the per-kWh levelized cost over the number of panels for three of the four home profiles

from Figure 2 (one home is removed to simplify the figure). These levelized cost curves are

the upward sloping lines. Figure 3 also shows the weakly decreasing step functions illustrating

the cost of the marginal unit of grid electricity for each home. Drops in these step functions

10While the expected solar generation is downward sloping with the number of solar panels, the relationship
is not necessarily monotonic. Following standard installation practice, each roof segment, or partition of
a roof with a common pitch and azimuth, is filled before an additional segment is used. Thus, small non-
monotonicities can occur when the first panel on a subsequent segment is installed. When non-monotonicities
imply multiple equimarginal crossings, we select the smaller number of panels.

11Compensation for excess generation through Net Surplus Compensation (NSC) was set by the California
Public Utilities Commission (CPUC) at roughly two to three cents per kWh, far below the marginal levelized
cost of solar for any household in our sample. Thus, we treat NSC as negligible.

12The levelized cost is a measure computed as the present discounted value of lifetime costs divided by
lifetime production. We use the default rate of 4% employed by Google Sunroof, which reflects the defaults
commonly used by solar installers when recommending system size. This rate is considerably lower than the
household rates we estimate. However, the optimal sizing decision is generally not made by consumers alone,
but rather by the installation contractor who presents the cost and expected payoff when generating a quote
for homeowner consideration. A lower discount rate tends to increase the savings relative to up-front costs,
which favors the installer using the lowest reasonable rate.
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(a) 5th Consumption Bin (b) 2nd Consumption Bin

Figure 3: Optimal System Sizes for Two Example Consumption Levels. Figure
shows the marginal per-kWh price of solar generation for the subset of homes from Figure 2b
along with the marginal grid price (dashed line) for consumption. Optimal installation sizes
are indicated with “∗” for each house.

occur where the number of panels on each rooftop generates a sufficient amount of electricity

for the household to drop down to a lower electricity rate tier.

The intersection of each step function with the upward-sloping levelized cost curve is

marked with a letter for the household, and it refers to the optimal solar system size where

the marginal benefit of another panel equals the marginal cost. We divide our sample into

five equal electricity consumption bins based on average consumption over the sample period.

Panel (a) assumes that the households that are in the highest bin, while panel (b) assumes

that the households in the 2nd bin.

To better understand Figure 3, begin with panel (a). Consider home D (green dashed

line). The upward-sloping marginal cost per kWh dashed line crosses the electricity rate step

function when the system size contains six panels (pointed out by D*). Home D receives

much less irradiance than home B, and thus home B has a much lower marginal cost per

kWh (yellow upward-sloping line). The electricity rate step function for home B steps down

to a lower tier at a solar system size of 21 panels. This system size is also where the step

function crosses the marginal cost per kWh line, thus indicating that the optimal system size

for home B is 21 panels. Home C falls in between, with an optimal system size of 13 panels.

Panel (b), which shows the same four homes if they had electricity consumption in the

second consumption bin, illustrates much smaller optimal system sizes. Homes B and C both

13



Figure 4: Model-free evidence. Observed share adopting solar over tertiles of irradiance
by wealth by climate zone. The figures show the change in observed share adopting as the
total generation with 15 panels increases.

have optimal system sizes of seven panels, while home D has such poor irradiance that it has

an optimal system size equal to the minimum installation size.13 In other words, it would not

make sense to install a solar system on this rooftop if the electricity consumption was in the

second consumption bin due to the lower electricity rates consumers in this consumption bin

face. The basic logic described here underpins our optimal sizing model.

3.3 Relationship between Effective Irradiance and Adoption

In Figure 4 we provide model-free evidence that shows the relationship between the probability

of adopting solar and the expected panel generation from a fairly typical 15-panel array.14

As the expected generation increases due to higher solar irradiance, the probability of

adoption increases. However, high- and medium-wealth households respond more to expected

generation than low-wealth households, both in absolute and relative terms. Since low-wealth

households are less responsive to increases in the flow payoffs, as appears to be the case in

this figure, they appear to place less value on these future payoffs relative to the present.

This provides suggestive evidence on the variation underlying identification of differences in

implicit discount rates in our structural model.

13We set the minimum installation size to five panels which corresponds to the smallest observed installation
in our data.

14The average optimal sized array is 15 panels. The average optimal-sized array conditional on adoption is
21 panels.
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4 Model

We develop a dynamic discrete choice model of residential solar installations. The motivation

for including dynamics to estimate implicit discount rates is that consumers have a “buy-or-

wait” decision about adopting solar, with expectations about future electricity prices and

solar panel prices. A key innovation in our model is to include a static optimal solar system

size decision based on setting the marginal benefits of an additional panel from reduced use of

grid electricity equal to the marginal costs of installing that panel. Because of the granularity

of our data, we can calculate what the optimal installation size is for every potential adopting

household as a function of electricity consumption, as is illustrated in Figure 3.

The optimal system sizing model is important in our setting both for correctly calculating

the payoffs from installing solar for a given consumer and for running counterfactuals that

change upfront versus future payoffs, and thus affect the optimal system size. Once the

household and installer determine the optimal solar system size for the home, the household

then decides whether to install solar using a discounted net present value calculation. This

calculation explicitly accounts for consumer expectations of future electricity prices and solar

prices. Details are in Appendix B.

4.1 Solar Installation Decision

Our dynamic discrete choice model of solar installations, conditional on the optimal system

size, follows the literature in treating the adoption of solar as an exit action (e.g., de Groote and

Verboven (2019)). A distinguishing feature of our model is that it leverages household-level

variation in characteristics and climate zones for identification.

The consumer decides whether or not to install solar, j ∈ {0, 1}, where j = 1 is the

decision to install. The flow utility for choice j at time t is given by ujt(q0, pt) + σϵjt, in

which q0 is the household’s baseline electricity consumption prior to installing solar and

pt is the electricity price. The utility when adopting solar depends on the sizing function,

which depends on these two arguments, which will determine q∗, the electricity generated by

an optimally-sized solar system. The ϵjt is a stochastic structural error term with scaling

parameter σ.

We normalize the flow utility of not adopting solar to u0t = 0; accordingly, we include the

savings from using less grid electricity in the value of adopting solar. In what follows, we will

derive an expression for the value of both adopting solar and not adopting. Since we treat

adopting solar as an exit action, the expression for adopting solar will capture the discounted

stream of expected utility for all periods subsequent to the adoption; i.e. u1t = v1t, where

vjt is the choice-specific value function for choice j ∈ {0, 1} at time t (absent the additive
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stochastic shock). The value of not adopting will be equal to the continuation value, as there

is the option of adopting later.

The total expected utility at time t is given by:

Vt(pt, Ct, Ft) =
∞∑
τ=t

ρτ−tE
[
max
j∈{0,1}

(ujτ (q0, pt) + σϵjτ )

]
, (1)

in which ρ is the household’s discount factor, Ct is the variable cost of installing solar to the

consumer, and Ft is the fixed cost of the system. Both Ct and Ft are inclusive of rebates and

the tax credits.

By Bellman’s optimality principle, we can also define the value function recursively

(dropping the t subscript for notational convenience) as:

V (p, C, F ) = max
j∈{0,1}

(
vj + σϵj

)
, where

vj ≡ E [uj|p, C, F ] + ρE [V (p′, C ′, F ′|p, C, F )] .

The prime notation indicates the next period’s value of the state variables (and we drop

the t subscript for notational clarity). We include an expectation term for uj in addition to

the next period’s continuation value because solar adoption is treated as a terminal choice

whose payoff also depends on the evolution of the state variables (p, C, and F ). We follow

de Groote and Verboven (2019) and assume rational expectations. We define a period in our

model as a quarter.

In order to derive an expression for the choice-specific value function of purchasing solar,

v1, we start with the total expected economic value from the adoption of solar over its lifespan

T relative to not adopting (not inclusive of the ϵj):

δ1 =

∫ q0

q0−q∗

T∑
τ=1

(ρ(1 + ζ)(1− λ))τ−1 pτ (x)dx− C(K∗)− F. (2)

The integrand in (2) reflects the present value of future costs of grid electricity avoided given

solar generation of q∗ over the lifespan of the array, which is given by T .15 It is determined by

the per unit price of grid electricity, p(x), which potentially varies (as a step function) in x,

and by the grid electricity consumed, which is the difference in total electricity consumption

per period, q0, and the electricity generated by the optimally sized solar PV system q∗.

15There is a very small approximation here: we treat the average price of offset grid electricity as not
changing as a result of the very small rate of panel depreciation, given by λ, leading to slightly less consumption
at the household’s lower tier.
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Consistent with the sizing model and following de Groote and Verboven (2019), ζ is the real

trend in electricity prices and λ is the panel depreciation factor.16 The C(K∗) and F are the

variable and fixed costs faced by the consumer of the solar installation of optimal size K∗,17

and the variable costs decline each period by a factor η such that C(K∗)′ = ηC(K∗).18

The expression for the expected economic value of purchasing solar over the life of the

solar array can thus be simplified to:

δ1 = θq∗p̄− C(K∗)− F, (3)

in which we define:

θ ≡
T∑

τ=1

((1 + ζ)(1− λ)ρ)(τ−1) (4)

The θ term can be interpreted as the number of current period payoffs that the household

values as equivalent to the stream of solar net benefits over T periods (similar to an indifference

break-even period but accounting for panel depreciation and rate increases). The p̄ is the

current average cost of grid electricity avoided by adoption of an optimally-sized installation

that produces q∗.19 Thus, θq∗p̄ captures the direct value of solar electricity consumption over

the installation’s life.

Next, we need to make an assumption about what consumers expect to do after the

lifetime of their solar array. We formulate the problem as an infinite-time dynamic problem,

with the simplifying assumption that once a household makes the decision to adopt solar,

the household will re-adopt after the solar installation reaches the end of its working life,

i.e., every T quarters. This seems like a reasonable assumption given that the household has

already chosen to adopt.20 An alternative could be to set utility to equal zero after the life of

16We estimate a climate zone and consumption bin-specific ζ according to p′(x) = (1 + ζ)p(x) + ϵp, with
results in Appendix D. Depreciation is incorporated in our model by further discounting the stream of benefits
of adopting generated from a non-depreciated solar array of the optimal size.

17We assume that all homeowners have sufficient tax liabilities to qualify for the 30% tax credit offered on
solar during this period, which we believe is a reasonable assumption for California homeowners due to the
fact that the tax credit can be carried over to future years and would be fully captured by the installing
company for leased systems.

18Upon examination of the data, the decline in solar PV costs appears to be in the variable costs and F
appears to be constant over time. This is consistent with cost declines that relate to either panel costs or
increased labor efficiency. We allow the fixed price component to vary by boundary group.

19As solar output declines gradually, it is possible for p̄ to also change slightly with tiered pricing, but we
will account for this in the estimation of how average price changes for different consumption bins over time.

20Some consumers might continue to use a very old depreciated system until it no longer works at all, but
we believe that using the standard 25-year lifespan is more reasonable than assuming all consumers continue
to use very old depreciated systems, many of which would no longer be working properly.
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the solar array, but this would not capture either the net benefits of a new solar system or

the cost of consuming grid electricity in later periods.21

Under these assumptions, the expected value of installing solar is given by the stream of

benefits from installing solar again every T quarters:

v1 = ω

 1

1− (ρ(1 + ζ))T
θq∗p̄︸ ︷︷ ︸

pEL

− 1

1− (ρη)T
C(K∗)− 1

1− ρT
F︸ ︷︷ ︸

pINV

+Xβ. (5)

The terms within braces in equation (5) are made up of the value of the stream of offset grid

electricity costs (pEL) and the upfront investment price (pINV ).22 These terms are a function

of a discount factor ρ, adjusted based on the trends in solar and electricity prices, as well as

the depreciation rate. The primary effect of ρ is to change the relative size of the two terms,

with a higher discount rate placing more emphasis on the installation costs.23 The pecuniary

term is pre-multiplied by the marginal utility of income, ω.24 This changes the relative

value placed on the economic benefit of installing solar and the additional non-pecuniary

utility derived from solar adoption, captured in the Xβ, such as from a warm glow effect

(Andreoni, 1990). The Xβ includes time-invariant household-level demographic variables and

home characteristics, as well as an area fixed effect interacted with wealth, and a time fixed

effect, both of which we assume consumers expect to remain constant in future periods. The

inclusion of wealth by area fixed effects captures area-specific heterogeneity in fixed costs,

search costs, and other local solar market aspects.

21In de Groote and Verboven (2019), the authors argue that they do not have to take a stand on whether
the dynamic problem is finite time or infinite time when using CCP estimation. This is technically true, but if
consumers view the problem as an infinite-time problem and the problem is treated as a finite-time problem,
this implicitly assumes that there is zero utility in period T + 1 (and later periods), since the expression
for the value of not adopting includes the current utility of not adopting plus additional T periods of value
when adopting and T + 1 when not adopting. This inconsistency is removed if the value in period T + 1 is
zero when adopting solar, but this means that the consumer treats the costs of grid electricity needed in the
current period as the same as the costs in period T + 1 (whether they be grid electricity costs or a new solar
array).

22This is the notation used in de Groote and Verboven (2019), who refer to these as the price terms.
23This is an indirect utility specification; we implicitly assume that utility is linear in numeraire non-solar

consumption and that agents can borrow or save at an implicit rate of 1/(1− ρ)− 1.
24We do not explicitly model savings behavior or the dependency of marginal utility of income on these

assets, which is beyond the scope of this paper. We do not have the needed variation in credit scores over
time to explicitly model and estimate savings behavior.
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4.2 Solar Leases

Nearly 45% of adopters during our study period used a third-party “leased” system wherein

the lessor bears all up-front cost to install the rooftop system, and the lessee agrees to pay

a price per unit of consumption during the life of the lease as part of a Power Purchase

agreement (PPA). In terms of up-front costs and benefits over time, the adoption decision for

a lessee is different from that of a purchaser. Specifically, leasing has the effect of amortizing

the cost of installing over the life of the panels. We are the first in the literature modeling

solar demand to explicitly model the lease option.

Given standard pricing approaches for leased systems, we show in Appendix F that the

value of leasing simplifies to:

vl1 = ω
[
pEL − κlpINV

]
+Xβl. (6)

This is the same expression as for purchasing, except the addition the κl; κl depends on

discount rate and changes the relative tradeoff between upfront costs (which the installer

incurs but passes on to the household through the PPA payments, along with a markup) and

the long-term benefits of solar when leasing vs. purchasing. The κl is determined by the

installer’s pricing rule for how it amortizes the cost of installing, its expected rate of return

over the life of the panels, and the household’s discount rate (which determines how they

value the future PPA payments). Households with κl < 1 (those with a high enough discount

rate) get more economic benefit from leasing and households with κl > 1 get more economic

benefit from purchasing.

In our specification, we assume that households have an unobserved, permanent lease-

purchase type such that a lease-type household will consider only leasing when considering

adopting and vice versa for purchase-types. We view this as a less-restrictive assumption

than parameterizing lease-purchase type by observable household characteristics. We discuss

integration over the unobserved type in Section 5.2.

4.3 Continuation value when not adopting

To close the model, we need to make assumptions about consumer expectations. We follow

Scott (2014) and de Groote and Verboven (2019) by decomposing the expected continuation

value shown in equation (1) into a deterministic value plus a short run prediction error, ϵV ,

such that households are correct on average:

ρE [V (p′, C ′, F ′|p, C, F )] = ρ[V ′ + ϵV ]. (7)
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We define ϵ0 ≡ ϵ0 + ρϵV such that the error term for non-adoption shown in equation (1)

is inclusive of both the stochastic utility of non-adoption and the short-run prediction error.

We assume ϵ0 and ϵ1 are distributed Type 1 extreme value with scale variance of σ. With

these assumptions, we can write the below expression for the value of non-adoption using

conditional choice probabilities (Hotz and Miller 1993), treating adoption as an exit state:

v0 = ρ (v′1 − σ ln(Pr′1) + σγ) , (8)

in which v′ is a calculated next period value of adopting, Pr′1 is the next period adoption

probability, and γ is the Euler-Mascheroni constant. Without loss of generality, we normalize

σ = 1.

4.4 Final econometric specification

In our main specification, we assume that consumers calculate v′ for both purchasing and

leasing by advancing prices according to the price trends and that they formulate a belief about

next period adoption probabilities, Pr′, using current period state variables (conditional on

type and consumption), which we estimate using a semi-parametric, flexible logit expression.

Under this assumption, the difference in the expressions for v1 and v0 in equations (5) and (8)

yields the difference in the value of adopting versus not adopting, now including the relevant

subscripts:

v1ibt − v0ibt = ωi

[
1− ρi(1 + ζb)

1− (ρi(1 + ζb))T
θq∗ibp̄ibt − κi

(
1− ρiη

1− (ρiη)T
Ct(K

∗
ib) +

1− ρi
1− (ρi)T

Fi

)]
+ (1− ρi)Xiβ + ρi (log(Pr′i)− γ) (9)

in which κi is equal to one for purchasing and equal to κl when leasing. Under the assumption

of time-invariant lessor/purchaser type, Pr′ is the semi-parametric estimate of adopting in the

next period when of the same type. As a robustness check, we also estimate the model using

an alternative assumption for V ′ and Pr′ following de Groote and Verboven (2019) by using

realizations of the value of adoption in the next period and constructing the semi-parametric

estimate of the next period adoption probabilities with the realizations of next period state

variables.

We allow the marginal utility of income, ωi, and the discount factor, ρi, to depend on

wealth.25 Heterogeneity across households in ζb results from differences in rate increases for

25We thank Ariel Pakes for noting the importance of heterogeneous marginal utility of income identified
separately from discount rates. The parameters of ωi are estimated with an exponential transformation
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different consumption bins due to the tiered pricing structure, in K∗
ib and q∗ib from differences

in the optimally sized system for consumption bin b, in Fi from geographic variation in the

fixed costs of solar installation, and in p̄ibt from differences in the optimally sized system and

electricity prices. A household’s probability of adoption conditional on consumption bin is:

Prpibt = Λ (v1ibt − v0ibt) , (10)

in which Λ is the standard Logit cdf. These probabilities will form the basis of the likelihood

estimation procedure.

5 Identification and Estimation

5.1 Identification

5.1.1 Identifying Variation

To identify both the marginal utility of income and the discount rate we need 1) variation

that shifts the long-term stream of benefits (the offset costs of grid electricity) relative to the

upfront costs, and 2) variation that shifts the total economic value of adopting solar relative

to other factors.

Climate zone borders provide variation in the marginal price of electricity, and thus

variation in p̄ for an installation of a given size. This provides variation in the stream of

benefits provided by solar relative to the upfront costs of solar panels, which allows us to

identify the discount rate; this is the same strategy as used in other work, such as the

concurrent work by Snashall-Woodhams (2024).

To identify the marginal utility of income in conjunction with the discount rate, we further

leverage household-level variation in irradiance. Here, the endogenization of installation

size is important. If households were to install the same number of panels regardless of

the irradiance, then separately identifying both would not be feasible. However, households

respond on the intensive margin to the costs of electricity. For example, many households

install enough panels to offset their full consumption. In this situation, higher irradiance

does not increase the stream of benefits but rather it lowers the upfront cost required for the

same stream of benefits, since households will install fewer panels.

Figure E.1 in the Appendix shows the distribution of the number of panels required for

different levels of generation for our observed installations. This variation results from the

ωi = eω0+ωmed1(wealthi=med)+ωlow1(wealthi=low). The parameters of ρi are estimated with a Normal cdf
transformation ρi = Φ(ρ+ αlow1(wealthi=low) + αmed1(wealthi=med)).
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variation in irradiance. Because a different number of panels is required for a given level

of output, there is variation in the upfront costs required to generate any given amount of

solar electricity. The fact that there is little incentive under NEM to install additional panels

above and beyond the amount needed to offset full consumption helps provide the variation

in upfront costs for observed installations, keeping the stream of benefits the same. The

net result is that variation in irradiance provides variation in the total economic value of

adopting solar, which allows us to identify the marginal utility of income.

The previously shown Figure 4 provides a sense of the cross-sectional variation in irradiance

that is providing variation in q∗p̄ and K∗, along with the variation in electricity consumption

and electricity rates (from the climate zones). A key takeaway from the figure is that while

higher irradiance on a rooftop leads to more adoption, the rate of increase in adoption is

much steeper for high-wealth and medium-wealth households than low-wealth households.

In other words, greater payoffs over the life of the solar system increase adoption more for

high-wealth and medium-wealth households than low-wealth households.

Our identification strategy differs from previous work estimating discount factors that

draws entirely from policy changes that provide temporal shocks to future values (de Groote

and Verboven, 2019; Bollinger, 2015). Such an approach is dependent on the variation in

the estimated Pr′ for identification of the discount rate (see equation (9) and recall that

the discount factor enters both θ and the Pr′). Our empirical setting intentionally covers a

period with few changes over time in regulations or electricity rates that could affect Pr′.

5.1.2 Identification Assumptions

There are three key assumptions in our identification strategy for the implicit discount rate

parameters. First, we assume that the profile of irradiance hitting each rooftop is exogenous

with respect to the utility of adopting solar, conditional on household/home characteristics,

electricity consumption, and a set of geographic fixed effects, including climate zone boundary

fixed effects. Second, we assume that homes on one side of a climate zone are similar to

homes on the other, after conditioning on this same set of controls. We believe this second

assumption is very reasonable given the careful choice of zip codes in our study. Third, we

follow the literature in assuming rational expectations for state variables and we assume these

expectations are the same for all wealth groups, an assumption we will discuss at length in

Section 6.4.

One concern with our first identifying assumption could be endogenous sorting, whereby

homeowners intentionally purchase homes that are better suited for solar in a way our
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controls do not already address.26 We consider this to be small concern given the high cost of

California real estate in comparison to the value of solar, and the fact that solar installations

were still relatively uncommon in the empirical setting. Furthermore, the average length of

residence for households in the sample is 13.6 years, indicating that most households in our

data purchased homes well before solar could have become a consideration.

Another potential concern with our first identifying assumption is the possibility that

households manipulate their local environment to improve solar irradiance reaching their

rooftop. For example, households could cut or trim trees. This would lead us to underestimate

the fixed costs of adopting solar and would be an issue for us if households with smaller implicit

discount rates are more likely to incur the same fixed cost than those with higher implicit

discount rates. However, much of our sample has few tall trees in residential neighborhoods

due to small lot sizes and relatively dry landscapes in California. In addition, we include

wealth fixed effects, which should help address any selection issue in tree trimming/cutting

across wealth bins.

5.2 Estimation

We estimate the household-level adoption model via maximum likelihood estimation. If

we could observe the purchase/lease type e ∈ {lease, purchase} and consumption bin b ∈
{1, ..., 5}, then each household’s contribution to the likelihood would be written simply as:

Libe =
∏
t

[Preibt]
yit [1− Preibt]

(1−yit), (11)

in which Preibt is the probability of household i adopting in time t, conditional on being type

e and bin b.

In practice, we do not observe the consumption bin b, nor the type e for non-adopting

households. Each non-adopter household is one of ten possible consumption × type com-

binations {1, ..., 5} × {leaser, purchaser}. We specify weights wibe as the probability that

household i consumes in consumption bin b and is of type e. With weights wibe, we integrate

the likelihood function over the unobserved heterogeneity:

L =
∏
i

∑
b

wib

∑
e

wie|b
∏
t

[Preibt]
yit [1− Preibt]

(1−yit) (12)

26E.g. two-story homes have smaller roof areas holding square footage constant. Preferences for two-story
homes may be correlated with unobservable tastes for solar. We include an indicator for two-story homes in
our controls.

23



which requires evaluating ten conditional likelihoods per observation of household i and time

t and then integrating over consumption and lease types. In our main specification, we treat

the combination of consumption bin b and type e as permanent, unobserved heterogeneity.

The weights are based on ratios of individual- and zip-level likelihoods using the method laid

out in Arcidiacono and Miller (2011); estimation details are in Appendix G.

6 Results

6.1 Parameter Estimates

The estimates of our structural model include a large set of coefficients, most of which are

controls, such as demographic and voting variables. Table 2 presents our primary estimation

results for key parameters and all of the remaining parameter estimates can be found in

Appendix Table H.1. First, we present our estimated marginal utility of income (ω) across

the wealth groups, as this parameter is very important for our counterfactuals and provides

context for our implicit discount rate results. We observe that the high-wealth group has

a much lower marginal utility of income, at 0.05, than the low-wealth group, at 0.49. The

medium-wealth group falls in between. The marginal utility of income is an ordinal rather

than cardinal parameter, so we interpret the difference between the wealth groups. The

low-wealth group has a marginal utility over nine times higher than the high-wealth group.

Table 2: Primary Estimation Results

Wealth Marginal Utility of Income Annual Discount Rate ¯̄θ Ratio

High 0.05 (0.02) 10.9% (0.03%) 48.9 1.5
Med 0.25 (0.19) 15.6% (13.35%) 34.9 1.1
Low 0.49 (0.4) 17.2% (0.25%) 31.7 1

All 14.5% 38.5 –

Heteroskedasticity-robust standard errors in parentheses, calculated by the delta method.
The difference between the high-wealth and low-wealth underlying marginal utility of income
structural parameters is statistically significant, with a p-value < 0.0001. The difference
between the high-wealth and low-wealth underlying discount rate structural parameters is
statistically significant, with a p-value < 0.0001.

Some of our most important results are the annual discount rates in Table 2.27 We find

that the high-wealth households have an annual implicit discount rate of 10.9%. Medium-

wealth households have a somewhat higher rate of 15.6%. And low-wealth households have

27We calculate these by transforming the structural coefficients, e.g., for high-wealth households Φ(ρi)
−4−1,

since the time step is a quarter.
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an even higher rate of 17.2%. All three of these estimates are significant, and the difference

between the low-wealth and high-wealth groups are also significant (as can be seen in the

coefficient αlow in Appendix Table H.1). The average rate for all groups is 14.5%. This

finding is remarkably close to the average finding in de Groote and Verboven (2019) of 15%,

estimated based on households in Belgium.

The final two columns in Table 2 provide a way to understand the implications of the

implicit discount rate results. Recall from our model that θ converts an initial $1 payoff

from offset electricity costs each period over the panel lifespan (100 quarters) into a present

value. This calculation takes into account the decrease in generation from panel degradation

λ and the increase in savings from expected electricity price increases ζi before applying

the implicit discount factor ρi. The difference between the high- and low-wealth groups

is substantial, with high-wealth households valuing the $1 flow payoff at $48.9, while the

low-wealth households value it at only $31.7. The ratio of the value of the two is 1.5. This

level of implicit discount rates and the remarkable difference in how consumers of different

wealth groups value the future payoffs from solar have very important implications for our

counterfactual results.

In Appendix I, we include the results from a range of robustness checks. These include

allowing for rebound effects, alternative trends for power purchase rates for leases, alternative

scaling and values for trends in solar and electricity prices, alternative assumptions for T ,

inclusion of race covariates, using a finite time horizon, and using of realizations for V ′ and

Pr′ instead of the predicted values. We consistently find that the stream of benefits from

offset grid consumption is valued roughly 50% more by high wealth households relative to

low wealth households across these specifications.

6.2 Price Elasticity of Demand

The implicit discount rate and the price elasticity of demand are two of the most important

parameters driving our counterfactuals. Our model is flexible enough to yield price elasticities

of demand that vary by wealth group. We calculate the elasticities by simulating adoption

(incorporating resizing) under a 1% reduction of the system cost over the sample period.

Table 3 reports the own-price elasticities of demand by wealth group and lease type.

The price elasticities range between -0.3 and -2.4. What is most notable is that the

elasticities of demand for high-wealth households are much smaller than for low-wealth

households. These price elasticities should be interpreted as the response over a quarter to

a long-lasting price change, affecting both current and future prices. Thus, they would be

expected to be slightly larger (in absolute value) than estimates in the existing reduced-form
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Table 3: Price Elasticity of Demand

Wealth Rate Installations Purchases Leases

High 10.9% -0.5 -0.3 -0.9
Med 15.6% -1.6 -1.3 -1.9
Low 17.2% -2.4 -2.4 -2.4

All 14.5% -1.4 -1.1 -1.8

literature. Indeed, this is the case. Other studies, using different time frames and often other

settings, tend to find price elasticities in the range of -0.65 to -1.2 (Hughes and Podolefsky,

2015; Gillingham et al., 2016).

6.3 Model Fit

Although examining price elasticities is one way to gauge the reasonableness of the model, we

also examine the model fit. We predict adoption probabilities for each household, time period,

consumption bin, and type, and aggregate the probability of adopting within the study time

period by wealth level. We can then compare our model-predicted aggregate probabilities

to the data. Overall, we find that our model fits the data well, with total installations only

overpredicted by 2.3%. The gap between predicted and data is slightly larger for purchased

systems than leased systems, but remains relatively small. For more detail, see Appendix H.

6.4 Why are Implicit Discount Rates Heterogeneous?

In Section 2, we discussed possible explanations for heterogeneous implicit discount rates across

wealth groups besides differences in the pure rate of time preference, including differences in

lending and borrowing costs, the marginal propensity to consume, beliefs, and risk aversion.

We account for possible differences in risk aversion with heterogeneous marginal utility terms,

and differences in the marginal propensity to consume are less likely in our setting. This

section presents evidence on borrowing costs and beliefs. There is evidence that present-biased

individuals are more likely to have substantially more credit card debt (Meier and Sprenger,

2010), which might suggest that borrowing costs or constraints might matter for lower-wealth

households, who appear to have a higher implicit discount rate.

Recall that in our primary specification we include the number of credit lines the consumer

has access to in our primary specification as a potential control for borrowing costs. To more

thoroughly test whether the differences in implicit discount rates are explained by a common
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proxy for borrowing costs, we leverage the individual-level Experian credit score data (see

Appendix J.1 for details). We allow the household discount factor to be given by:

ρi = Φ(ρ0 + αmed1{wealthi=med}+ αlow1{wealthi=low}

+ αmed,PC1{wealthi=med}1{crediti=poor}+ αlow,PC1{wealthi=low}1{crediti = poor}),

in which we use a dummy to indicate households with poor credit (near-prime or sub-prime).28

We group all high-wealth households together since there are so few with poor credit scores.

We find that medium- and low-wealth households with poor credit have implicit discount

rates of 29.4% and 66.2%, respectively. Because credit scores are indicative of liquidity

constraints and influence borrowing costs (Adams et al., 2009), this provides suggestive

evidence that borrowing costs or limits matter for the implicit discount rates.

The estimated implicit discount rates for households with good credit scores are 15.9%,

15.9%, and 25.2% across high-, medium-, and low-wealth consumers.29 The ratio of the

low-wealth rate to the high wealth rate is 1.58, which is nearly the same as the ratio in

our primary result. This suggests that when households have good credit, there must be

another reason for the heterogeneity in implicit discount rates across wealth groups. This

does not rule out other borrowing frictions or limits, as borrowing costs or limits are not

solely determined by credit score.30 Indeed, it is quite possible that borrowing limits or

other frictions may play some role, along with differences in time preferences (perhaps due to

behavioral anomalies).

One remaining potential explanation for heterogeneity in discount rates is heterogeneous

beliefs. There are several key expectations that consumers have to make in the solar purchase

decision, including over future electricity rates for their initial consumption and climate zone

(ζ), panel degradation (λ), and panel life (T ). Under the common assumption of common

rational expectations, consumer beliefs would play no role. But systematically different

expectations by different wealth households could influence the implicit discount rates.

We view systematically different beliefs for ζ across wealth groups as unlikely for two

reasons. First, our sample consists of homeowners in California, who all have at least a reason-

able degree of wealth, so differences in electricity rate expectations driven by systematically

28For households with missing credit data, we allow for similar flexible interactions between an indicator
for missing data and wealth.

29These estimated rates are somewhat higher than our main results. We attribute this difference to the
incomplete matching of credit scores and thus a different subsample.

30There is evidence that credit scores alone are not sufficient in predicting default risk (Albanesi et al.,
2022; Albanesi and Vamossy, 2024). van Rijn et al. (2021) show that income and net worth are predictive of
lower loan rates for automobiles.
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different views on utility pricing seem unlikely. Second, we estimate consumption-specific

measures of ζ, yet the distribution of electricity consumption is not particularly different

across wealth groups (see Figure A.1b), greatly reducing the likelihood of differing expecta-

tions over wealth. Similarly, systematic biases that differ across wealth groups in the panel

depreciation rate λ are highly unlikely as these are engineering estimates that come straight

from the installers and are easily found online.

There are two possible reasons to think there might be heterogeneity in the T across

wealth groups. The first is that consumers in different wealth groups could have different

expectations about panel lifespans. However, given that panels tend to have 25-year warranties

and that contractors give the same information about panel lifespans to all consumers, one

would expect all consumers to have the same expectations for how long panels will continue

to produce electricity. The second possible reason is that some consumers may have different

beliefs about how long they will live in their home than others. For example, households

with lower wealth may believe they are more likely to move before the 25-year lifespan of the

solar panels. In this case, it matters how the residual value of solar panels is capitalized into

the expected transaction price.

Fortunately, we have some evidence to draw upon. Bollinger et al. (2025) surveys 3,305

respondents nationwide who either are considering solar panels or EVs (or have already

made the purchase), and asks exactly this question. Of these, 1,673 are homeowners, all

but one of which respond to the income question. Figure J.1 from this study shows that

the fraction of homeowners that plan on staying in their home more than 20 years is nearly

identical across income groups, and in general the expectations look similar across income

groups (see Appendix J.2). Note that California homeowners are unlikely to be in the lowest

income category due to the high cost of homes in the state. There is also evidence on the

capitalization of the residual value of solar into home transaction prices. There is a literature

indicating that capitalization for solar is very high, and in many cases near 100% (Dastrup

et al., 2012; Qiu et al., 2017; Gillingham and Watten, 2024). Given that capitalization of

housing attributes–including swimming pools, fireplaces, garages, and air conditioning–does

not seem to vary with wealth (Sirmans et al., 2006), we view it unlikely that beliefs about

capitalization of solar panels are going to be substantively different across wealth.31 Indeed,

solar installers generally tell all of their customers that they should expect their home values

to rise along with the value of the system. All of this evidence suggests that different beliefs

31Gillingham and Watten (2024) present evidence that low-income households may have lower capitalization
of the residual value of a solar system in the home transaction price than high income households. However,
this assumes the same discount rate in calculating the net present value as high-income households and if the
discount rate for low-income is higher, then capitalization could be very similar.
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across wealth groups is less likely to be a major factor in explaining the heterogeneity in

implicit discount rates.

We further explore systematically different beliefs by performing a bounding exercise.

Specifically, we calculate equivalent values of each of the three parameters {ζ, λ, T} that

would result in our estimated θ but constant ρ over wealth groups.32 For example, for ζ,

we take estimates of the quarterly discount factor ρ = {0.974, 0.964, 0.961} and using (4),

we solve for the value of ζ̃ such that (1 + ζ̃)(1 − λ)ρlow = (1 + ζ)(1 − λ)ρhigh. While our

estimated ζ implies an annual electricity rate increase of 2.7%, the ζ̃ required to equate

the low-wealth and high-wealth implicit discount rates would be -2.8%, which is clearly

unreasonable. An equivalent exercise for λ̃ would require that low-wealth households believe

that panel generation would decline 6.6% per year, a factor of 8.2 times the engineering

estimate of 0.8%. The same exercise for T̃ yields the result that low-wealth households would

have to expect an effective panel lifetime T̃ = 11.2 to fully explain the differences in implicit

discount rates, which is less than half of the 25-year warranty for solar systems. This seems

unlikely, as it would require low-wealth households to have dramatically shorter expectations

of T than high-wealth households or beliefs of much lower capitalization, neither of which is

supported by the evidence available. Thus, we cannot entirely rule out that different beliefs

across wealth groups contribute in some way to the heterogeneity in implicit discount rates,

but the evidence suggests that different beliefs are not likely to be the primary explanation.

7 Counterfactuals

We explore two counterfactual policies. First, we reduce the compensation for excess solar

generation fed back into the grid. Instead of compensation at the retail rate, as under

standard NEM, we use an estimated levelized avoided cost of energy of $0.062/kWh.33 This

first counterfactual roughly approximates some of the changes under California’s NEM 3.0

reform. Second, we again reduce the compensation rate for excess solar generation, but

accompany it with an upfront subsidy. Under both scenarios, we hold solar prices fixed. The

market for solar modules is global, so module prices are unlikely to adjust. Installers could

lower their prices in response to the reduced demand, although we would have to assume

32That the consumer is correct in expectation over future values of prices is a common assumption in the
literature even when identifying heterogeneous preferences. For instance, Gowrisankaran and Rysman (2012)
estimate a similar linear autoregressive specification for camcorder prices and incorporate it into a model
with persistent consumer heterogeneity. See also Bayer et al. (2016); Hornbeck et al. (2024).

33This estimate is from a typical solar generation profile in the California Public Utilities Commission
Avoided Cost Calculator derived by E3 Consulting (E3, 2022)
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a model of competition to calculate this response. We discuss this possibility further when

presenting the welfare results.

The upfront subsidy in the second counterfactual is chosen to keep the total capacity

of solar installed roughly the same in the counterfactual as in the observed data, assuming

100% pass-through.34 This counterfactual uncovers the potential efficiency and equity

improvements possible from changing the policy, while avoiding any political fallout (and

reduced environmental gains) from diminishing the solar industry.

Before turning to the results, it is worth a brief discussion of how we estimate the outcomes

in our counterfactuals. Since state transitions may change under our counterfactuals, we

follow similar assumptions as in our parameter estimation, allowing consumers to expect a

deterministic evolution of the state variables with a short-run prediction error (see Appendix

K). We assume that the policy changes are expected to remain in place for the future. We

use the optimal solar system sizing model to incorporate how changes in policy affect system

sizing. The baseline that we compare our policy counterfactuals to is the observed data.

7.1 Lowering Compensation for Exported Solar

Lowering the compensation for excess solar electricity fed into the grid to $0.062/kWh leads

to a leftward shift of the demand curve for solar installations because the benefits of solar are

reduced. One challenge in running this counterfactual is that the change in the net present

value of a given system depends on how much solar electricity is consumed by the household

when the solar generation occurs (and thus offsets buying electricity at the retail rate) versus

being exported to the grid. For example, on one extreme, one could imagine a household

that uses all of the electricity generated by the solar system, so that none of the electricity is

fed into the grid. For this household, a reform that lowered the compensation rate for excess

electricity would not change the net present value of adopting solar. On the other extreme, a

household that fed nearly all of the electricity into the grid would have a much lower solar net

present value after the reform. We report our results for several potential “splits” between

solar generation that offsets consumption and solar generation that is exported. Specifically,

we report {0, 30, 50, 70, 99} percent exported. For each split, we allow for re-sizing, then

predict adoption conditional on the resized flow benefits and up-front costs.

Table 4 presents the first results of the counterfactual analysis, showing the percent change

in solar adoption for each of the three wealth groups and the entire sample.35 Each row

34Under a specific model of competition we could calculate the optimal pass-through rate and use this
instead.

35We hold solar prices fixed, but if we were to allow solar prices to adjust downward, these declines would
be lower, although we do not expect it would be by much given how large the global market is.
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Table 4: Percent Change of Solar Installations in Counterfactual Relative to Baseline

% solar exported

Wealth 0 30 50 70 99

High 0 -3 -8 -14 -23
Med 0 -6 -12 -17 -21
Low 0 -5 -7 -10 -13

All 0 -5 -9 -14 -19

shows the percent change in adoptions in the counterfactual relative to the baseline and the

columns indicate the percent of solar generation exported to the grid. When none of the

solar is exported to the grid, the counterfactual is identical to the baseline.

When 99% of solar generation is exported to the grid (last column in Table 4), we observe

that adoption falls by 23% among high-wealth households and by only 13% among low-wealth

households (Table 4). The larger decline for high-wealth households reflects their greater

sensitivity to reduced NEM benefits, driven by lower implicit discount rates and higher

marginal electricity prices under the tiered rate structure. High-wealth households tend to

consume more electricity and thus tend to be on a higher electricity rate tier, so their bill

offset under current NEM policy is larger.

As we reduce the percent export from 99%, the tiered rate structure for electricity prices

becomes even more important. For example, with 50% of the electricity consumed by the

household, more higher-wealth households are going to be interested in solar under the

counterfactual because they tend to consume more electricity at a higher electricity rate

tier. This force explains why the high-wealth group has the same percent reduction in solar

installations as the low-wealth group, at approximately 8%. Indeed, when 30% of solar is

exported, this second force dominates and the percent reduction for high-wealth households

is lower than for low-wealth households.

If solar systems are sized to fully or nearly fully offset annual electricity consumption,

we would anticipate that approximately 30-50% of electricity being exported for a typical

household whose members generally leave the home for work during the day. The actual

amount is unobservable and there is seasonality, given that most solar systems overproduce

relative to consumption during the summer and underproduce in the winter.

7.2 Replacing NEM Compensation with Upfront Subsidy

Our second counterfactual effectively swaps a flow payoff for an upfront subsidy. There are

two common variations in the design of upfront solar subsidies. One approach is to provide an
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incentive based on the system size (a per-watt capacity subsidy). Under a capacity subsidy,

households installing larger systems–who are often wealthier households–would receive greater

subsidies than those installing smaller systems. Alternatively, the government could provide

a fixed upfront subsidy that is the same for all solar consumers. Fixed upfront subsidies

are less common, but they might have preferable distributional consequences. We explore a

per-watt capacity subsidy and a split policy in which 50% of the upfront subsidy is per-watt

and 50% is a fixed upfront subsidy that everyone receives.

We calculate the subsidy required (assuming 100% pass-through) to ensure that the total

number of adoptions among high-wealth households remains roughly equal to the baseline

number under the split policy. One reason for ensuring that solar adoptions remain the same

for high-wealth households might be political constraints—since medium- and low-wealth

households are more responsive, the subsidy is the smallest necessary to keep adoption

rates greater than zero for all wealth groups. For each solar consumer, we estimate the

additional subsidy cost to the government and the savings to the utility. Specifically, we

calculate the change in the net present value from reducing the NEM compensation and then

calculate the net present value of the utility savings (using a 6% implicit discount rate for

installers, aligned with our lease model). If we wanted to allow for incomplete pass-through,

government expenditures would have to increase by some additional amount (depending on

the pass-through rate) which would be directly transferred to the installers.

We find that roughly half of the savings from the reduced NEM compensation would be

sufficient to hold the total solar adoptions by high-wealth households constant if it is allocated

to upfront subsidies, using both a 30% and 50% grid export rate. If 30% of generation is

exported to the grid, then the subsidies required are $731 per installation and $0.15 per

watt. For 50% of generation exported, the subsidies are $1,961 and $0.42 per watt.36 Table 5

presents the counterfactual results for each wealth group and for the total population.

In Table 5, we present the percent change from the baseline in solar installations and

solar capacity for each of the three scenarios: no subsidy (repeating the Table 4 results for

reference), savings from reducing NEM compensation used for an upfront capacity-based

per-watt upfront subsidy, and savings used for the split capacity and per-installation subsidy.

The total aggregate value of the upfront subsidy is identical between the capacity subsidy

and the split subsidy. The capacity-based subsidy is $0.30/W for the 30% export rate case

and $0.84/W for the 50% export case.

We find that the upfront subsidy leads to more solar installations by low-wealth and

medium-wealth households than in the baseline, especially at the 50% export rate. A key

36The fraction rebated is approximately 50% of the revenues no longer used for NEM, but varies somewhat
due to the resizing that occurs in response to different subsidy levels.
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Table 5: Percent Change of Solar Installations and Capacity in Second Counterfactual
Relative to Baseline

No subsidy Per-W Per-install and per-W

Wealth Adopted Capacity Adopted Capacity Adopted Capacity

30% exported to grid
High -3 -6 0 -2 0 -3
Med -6 -8 3 2 3 1
Low -5 -8 6 5 8 5

All -5 -7 2 2 3 1

50% exported to grid
High -8 -18 0 -1 0 -6
Med -12 -20 10 10 10 5
Low -7 -20 19 19 27 18

All -9 -19 9 8 11 4

”Adopted” refers to number of adoptions. ”Capacity” refers to kW installed.

reason for this finding is the heterogeneity in implicit discount rates, as the upfront subsidies

are not discounted while the current NEM policy benefits would be. The heterogeneity in

the marginal utility of income (see Table 2) also contributes. The increase in adoptions by

low-wealth households is even more notable under the split subsidy. Low-wealth households

tend to have smaller systems, so a per-installation subsidy will provide greater benefits to

these households than a capacity-based subsidy.

Another notable finding in Table 5 is a difference between the change in the number

of installations and solar capacity across scenarios. For example, in the 50% export case,

low-wealth households observe a 27% increase in installations but only a 18% increase in

solar capacity. The explanation here is that, even after optimal resizing, solar system sizes

for low-wealth households are substantially smaller than for higher-wealth households. This

finding highlights the value of modeling system sizes in our analysis.

7.3 Welfare and Marginal Value of Public Funds

Changes in welfare-relevant outcomes are crucial inputs to the policy process, but are

complicated in the electricity market. There are distortions from raising revenue either

through taxes or by increasing electricity rates. Further, the policy changes affecting utility

revenues can lead to adjustments to the electricity rate (Hahn and Metcalfe, 2021), including

changes to the entire tiered rate structure. Given the difficulty in ascertaining how such
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changes might occur, our analysis holds the electricity rate structure fixed (future work could

relax this by estimating a new equilibrium). Thus, our analysis should be seen as short-run

or medium-run, prior to any new rate cases that would revise electricity rates.

In Table 6, we report changes in welfare-relevant outcomes for each wealth group and

for the entire sample for a 50% export rate (see Table L.3 for a 30% rate). The numbers for

each wealth group are for the outcomes attributed to the solar adoption decisions of each of

the wealth groups, rather than the welfare-relevant effects on that group, as in a standard

distributional analysis. In the second column, we calculate the gross post-subsidy changes

in consumer surplus by integrating under each consumers’ new demand curve, inclusive of

the subsidies and accounting for the possibility of system resizing. The change in the excess

solar generation compensation rate shifts each household’s demand curve for adopting solar

to the left, and the size of the shift depends on their discount rate, their irradiance curve,

their electricity consumption, and the initial tiered pricing structure. We carefully account

for heterogeneity by calculating the welfare effect for each household (integrating over the

unobserved consumption state with the estimated weights) and then aggregating, rather than

assuming a representative consumer.

Table 6: Changes in Welfare-Relevant Outcomes (Millions $; % Change)

Wealth ∆ Consumer ∆ Installer ∆ Utility ∆ Avoided ∆ Government
Surplus Surplus Surplus Damages Expenditures

Lowered Compensation for Exported Solar
High -$13.9 (-49%) -$8.2 (-21%) $19.2 (54%) -$7.9 (-22%) -$3.5 (-21%)
Med -$8.2 (-30%) -$11.3 (-25%) $23.6 (59%) -$11.0 (-26%) -$4.7 (-25%)
Low -$2.3 (-17%) -$5.5 (-23%) $11.4 (60%) -$5.5 (-25%) -$2.3 (-23%)

All -$24.4 (-35%) -$25.0 (-23%) $54.2 (57%) -$24.3 (-24%) -$10.5 (-23%)

Lowered Compensation for Exported Solar plus Split Subsidy
High -$9.8 (-30%) -$6.5 (-16%) $14.3 (35%) -$2.5 (-6%) $7.8 (29%)
Med -$1.2 (-3%) -$2.5 (-5%) $11.9 (23%) $2.5 (4%) $13.1 (36%)
Low $3.1 (16%) $2.6 (8%) $2.9 (10%) $5.0 (15%) $9.9 (45%)

All -$7.9 (-9%) -$6.4 (-5%) $29.0 (24%) $5.0 (4%) $30.9 (36%)

All estimates assume 50% export to grid.

In column three, we calculate the changes in pre-tax installer surplus . For this calculation,

we need an estimate of the installer margin. We draw upon existing data for this estimate.

Using a module cost of $0.67 per watt and inverter cost of $0.32 per watt (US Department of

Energy, 2015) plus labor cost of $0.33 per watt and permitting cost of $0.19 per watt (Chung

et al., 2015), combined marginal costs in 2014 would be $1.51. At the average solar price in

our data in Q1 2014 of $5.12 per watt, this implies a 71% margin. This estimated margin also
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aligns nearly perfectly with the implied margin using our estimated elasticity of -1.4 under

the assumption of a single installer (we aggregate our installers) with monopolistic pricing.37

In the fourth column Table 6, we show the changes in the pre-tax utility surplus (revenues

net of avoided cost of generation) from both the changes in NEM subsidies and the change in

solar adoption, integrating again over all households. In column five, we present the aggregate

avoided environmental and health damages resulting from changes in solar installations using

the monetized values of the externalities in Sexton et al. (2021).38 Finally, we show the

change in government expenditures due to differences in payouts from the ITC and subsidies.

Further details on our calculations can be found in Appendix L.

We find that lowering the compensation for exported solar to the avoided cost reduces

consumer surplus (in the sample) by $24.4 million, reduces installer surplus by $20.6 million,

increases utility surplus by $54.2 million due to the reduction of bill offsets for net solar

generation, reduces avoided damages by $24.3 million, and reduces government tax credit

expenditures by $10.5 million. The bulk of the impacts are due to the decisions of the

high-wealth group.39

Under the split subsidy, aggregate consumer surplus declines by -$7.9 million from baseline,

but increases for the low-wealth households by $3.1 million. This demonstrates a clear equity

tradeoff. Government outlays increase by $30.9 million, installer surplus declines by $5.3
million, and utility surplus increases by $29.0 million. Avoided environmental and health

externalities increase by $5.0 million.40 If additional subsidies were needed to achieve the

reduction in post-subsidy prices due to incomplete pass-through, then this would mean

government expenditures would have to be higher to achieve the same price change and thus

same demand response, an additional transfer from government to installers.

The key takeaway here is that switching from an NEM subsidy to an upfront subsidy

can maintain the level of the solar market, maintain the environmental and health benefits,

improve the consumer surplus for low-wealth households, and reduce utility expenditures

(which could reduce the cost-shift and potentially also benefit low-wealth households).41

37For a comparison of our elasticity to the literature, Gillingham and Tsvetanov (2014) finds an elasticity
of -0.65, Pless and Van Benthem (2019) find an elasticity of -0.85 for purchased systems, and Hughes and
Podolefsky (2015) find an estimate of approximately -1.2.

38We use the “dollarization” method from this paper and do not split up the calculation by wealth group
as this is infeasible. We use a social cost of carbon set at $175/ton in $USD2017 (Rennert et al., 2022).

39If we were to allow solar prices to optimally adjust downward towards zero under this counterfactual,
these changes would all be smaller since the reduction in the number of installations would not be as large.
Recall that installers would only decrease prices if it increased their profits.

40Given that total installations increase in this scenario, if solar prices were allowed to adjust they would
do so upwards, attenuating these numbers slightly.

41Recall that our final sample consists of 183,667 households, which represents 3.2% of all owner-occupied
single-family detached homes in California, so the results would have to be scaled up by a factor of 31 to
cover all of the state.
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7.3.1 Marginal Value of Public Funds

One promising approach to gain insight into the overall welfare effects of subsidy coun-

terfactuals without making assumptions about the deadweight loss from raising funds is

to calculate the marginal value of public funds (MVPF) (Finkelstein and Hendren, 2020).

The MVPF is the ratio of the policy beneficiaries’ willingness to pay for a policy to the

government expenditures of the policy. It is a measure of the effectiveness of government

expenditures. The gains to the beneficiaries include the change in consumer and installer

surplus, electric utility expenditures (accounting for taxation, which goes to the government),

plus the externality damages avoided. The government expenditures account for the changes

in the incentive payments shown in Table 6, and also account for changes in tax revenues. A

MVPF of greater than one indicates that the government expenditure is less than willingness

to pay, providing one indication that the policy is net beneficial.

In our MVPF calculations, we focus on the MVPF of our second counterfactual relative

to our first to provide evidence on the marginal social value of using some of the savings from

reducing NEM compensation for additional subsidies. We calculate the MVPF for subsidies

that might be targeted to each wealth group. We follow Hahn et al. (2024) in how we handle

installer surplus, the electricity markup, and corporate taxes for installers, the electric utility,

and government expenditures, using the same assumptions (a 10% corporate tax rate and the

8% economy-wide markup found by De Loecker et al. (2020)).42 MVPF methods are detailed

in Appendix M.1.

Table 7: Changes in Outcomes (Millions $) and Marginal Value of Public Funds from
Comparing the Two Counterfactual Scenarios. Assumes 50% export to grid.

Wealth Consumer Installer Utility Avoided Government MVPF
Surplus Surplus Surplus Damages Expenditures

High $4.1 $1.5 -$4.3 $5.4 $11.7 0.57
Med $7.0 $7.7 -$10.3 $13.5 $18.4 0.97
Low $5.4 $7.0 -$7.5 $10.5 $12.5 1.23

All $16.5 $16.2 -$22.1 $29.4 $42.6 0.94

42Our calculations would be the same with government-mandated transfers of the post-tax utility savings
back to consumers – pre-tax transfers would lead to small changes in the effect on government revenues.
Another possible transfer mechanism is a small downward adjustment in utility rates, which would have a
secondary effect of reducing installations to some degree since the value of the offset utility bills would be
reduced. We anticipate that the MVPF calculations would not change appreciably.
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Table 7 presents the results of our MVPF calculations for the 50% export to grid

assumption (30% results are in Appendix M.2).43 We observe MVPF values ranging from

0.57 to 1.23, with the lowest values for high-wealth households and the highest for low-wealth

households. These findings show that the willingness-to-pay for the policy is, on average,

only 94% of the cost of the policy, which suggests that the benefits of the policy are close

to the government expenditures. The utility surplus, which is distributed across all utility

customers, offsets much of the consumer and installer surplus, so most of the surplus gains

are from the avoided externality damages. Notably, the MVPF exceeds 1.0 for low-wealth

households, indicating that the willingness-to-pay for a policy targeting low-wealth households

exceeds the government expenditures. This result is because high-wealth households are

are less price-sensitive than low-wealth households (recall Table 3) and are more likely to

install without the subsidy. As a robustness, we also considered how incomplete passthrough

would influence the MVPF. If passthrough is the only parameter that changes, and we have

passthrough less than 100%, then there would be some transfer from the government to

installers, leading to MVPF estimates closer to 1.0 than under 100% passthrough.

8 Conclusion

In this paper, we use a novel identification strategy that leverages plausibly exogenous

variation in irradiance to identify implicit discount rates used by households in California

in their solar installation decisions. We provide model-free evidence that high-wealth and

medium-wealth households are more responsive to the value of the solar flow payoff obtained

by investing in solar panels than low-wealth households, highlighting the features of the

data that drive our results. We then estimate a structural dynamic model that pins down

an average implicit discount rate for residential solar adopters of 14.5% and demonstrates

clear heterogeneity in the implicit discount rate by wealth, with high-wealth households

making decisions consistent with a 10.9% rate and low-wealth households a 17.2% rate. Our

results help explain disparities in solar adoption rates between low-wealth and high-wealth

households.

We also explore why these differences might occur with credit score data. We find that

households with poor credit have higher implicit discount rates, indicating that credit scores

matter. But the same 1.5 ratio of the high-wealth to low-wealth rates remains even for

households with solid credit, suggesting that the disparity in rates between groups is not due

43Installer surplus, utility surplus, and government expenditures are adjusted in the MVPF calculation to
account for fiscal externalities; consumer surplus and avoided damages are the differences between the top
panel and bottom panel in Table 6.
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solely to credit scores. This is important because if borrowing costs are the only explanation

for the heterogeneity in discount rates, then attention would primarily turn to credit-related

policies instead of subsidies.44 We find that the best evidence available renders other potential

explanations for the heterogeneity in implicit discount rates less likely, suggesting that credit

and differences in the pure rate of time preference are the more likely explanations.

Our counterfactual results indicate that reducing NEM compensation to the avoided cost

would reduce the size of the solar market substantially. It would reduce installations across all

wealth groups, but would reduce consumer surplus of the high-wealth households much more

than low-wealth households. If roughly half of the savings from reducing NEM compensation

are allocated to an upfront subsidy (half per installation and half per capacity installed), this

would maintain the size of the solar market, reduce government and utility expenditures, and

even lead to an increase in consumer surplus for low-wealth households. In short, by carefully

structuring the upfront incentives, there is the potential to improve equity and reduce any

potential cost-shift. Such a subsidy results in a MVPF of greater than one for low-wealth

households, but less than one for high- and medium-wealth.

California and many other states are reforming NEM policies to better reflect the actual

value of solar generation, while the federal ITC is in the process of being phased out

shortly. Given these major changes to the financial benefits of adopting solar, it is useful

for policymakers to understand how consumers’ valuation of different solar subsidies vary

by household wealth. Many other green durables have similar characteristics with upfront

costs and future fuel savings, and future work may show that our results generalize further.

Our study aims to provide a contribution to the economics literature through well-identified

estimates of the implicit discount rate across wealth groups, insights into the mechanisms,

and guidance to policymakers on the distributional effects of different policy approaches.
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Online Appendix

A Data Assembly

A.1 Sample Selection

We assemble the study sample by first identifying zip codes in California that are located within
the Pacific Gas and Electric service territory. We identify the climate zone associated with each zip
code in the Pacific Gas and Electric service territory and extract from the sample home in those zip
codes that lie on a climate zone boundary45. The 28 zip codes contained in the sample are shown in
Figure 1.

Our base dataset of potential solar adopters is the set of all single-family detached non-mobile
home residences that were built before 2014 in the 28 zip codes we identified.

A.2 Google Project Sunroof Matching

We match each household in our data to the nearest Google Project Sunroof record with a greedy
spatial matching algorithm. We drop the 5% of households with the largest distance between the
geocoded home address and the Google Sunroof record. For each matched household, our data
contains the panel-by-panel expected generation. Generation is largely decreasing as panels are
ordered by generation, though contiguity requirements may result in some increases. Figure 2b
shows the previous four randomly selected rooftops’ generation profile.

A.3 Household Consumption Profiles

The PG&E data are anonymized and do not include addresses. They do include the 5-digit zip code,
tariff ID, as well as grid interconnection IDs that identify solar adopters. Thus, for solar adopters,
we observe the annual consumption prior to the installation of solar and can designate the closest
consumption bin for each adopter. For non-adopters, we see only the full distribution of consumption
across the zip code. For each zip code, we remove known adopters and bin all consumption into
five equal-sized consumption bins. We also remove a very small number of households (less than
100) enrolled in an early version of the Electric Vehicle (EV) tariff. In estimation, we will integrate
over the observed empirical distribution of consumption within each zip code (sampling without
replacement).

The study period is 10 quarters, from Q1 2014 through Q2 2016, so we treat consumption as
fixed over the study period. We calculate the mean consumption for each bin within each zip code.
A density plot of zip-level consumption is shown in Figure A.1a. Figure A.1b shows the consumption
levels of adopters and non-adopters by wealth. Across all three weath bins, adopters have higher
consumption on average. As wealth increases from low- to medium, the separation between average
consumption of non-adopters and average consumption of adopters becomes larger, consistent with
lower implicit discount rates and higher sensitivity to the flow of benefits from installing solar

45During the study period, PG&E designated CEC climate zones as “baseline territories”. We use PG&E
published rates by territory, but note that these territories follow the CEC climate zone boundaries.
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(a) Distribution of zip-level consumption bins
calculated from the full distribution of consump-
tion by zip code. For each zip code, consump-
tion is grouped into one of five bins (1 is lowest
consumption, 5 is highest) and the mean con-
sumption is calculated for each bin. Plot shows
the distribution across zip codes of the five bin’s
mean consumption.

(b) Density of consumption by adopter sta-
tus and wealth. To calculate density of non-
adopters, we assign equal weight to each of the
five consumption bins for the household’s zip
code.

Figure A.1: Consumption Summary Statistics

A.4 PG&E Rates

While all households in the PG&E service territory share the same block pricing steps at any given
time, California Energy Commission (CEC) climate zones vary in the width of a block tier pricing
step – hotter inland zones are allowed more baseline consumption before stepping up to the next
higher marginal rate relative to cooler coastal zip codes. Our sample includes homes in 28 zip codes
that are wholly contained in one of three unique CEC climate zones (PG&E territories S, T, and X).
While all homes initially face the same price per kilowatt-hour for their first unit of consumption,
homes in warmer CEC climate zones will, as consumption increases, face lower retail rates than will
homes in cooler CEC climate zones due to the higher threshold for stepping to the next block tier
price. Average retail price per kilowatt-hour is weakly lower in warmer CEC climate zones with
higher baseline thresholds.

During the study period, baseline thresholds were adjusted once. Thresholds are shown over
time in Figure A.3. The sample contains 34,796 households in zip codes in Territory S, 57,790
households in zip codes in Territory T, and 91,081 households in zip codes in Territory X, for a
total sample size of 183,667 representing approximately 3.2% of all owner-occupied single-family
detached homes in California.

In addition to spatial CEC climate zone variation in block tier step width, retail electricity rates
for each step of block tier pricing vary over time, as shown in Figure A.2. Although rates at lower
consumption levels (Tiers 1 and 2) steadily increased during the study period shown (2014-2016),
higher tier prices decreased slowly over the same time period. Thus, higher-consumption households
experienced smaller total increases in the average cost per kilowatt hour during this time period.
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Figure A.2: Retail Rates. Retail rates by tier over time in dollars per kilowatt-hour.

Figure A.3: Rate tier climate zone thresholds. CEC climate zone thresholds over time
in kilowatt-hours per month. Corresponding rates are shown in Figure A.2

46



B Sizing Model

In this section, we describe the optimal sizing decision for solar purchasers. The optimal size of
the system is a function of the system costs (inclusive of upfront subsidies), system generation
(as a function of size), and the price of grid electricity, which depends on a household’s electricity
consumption due to the tiered pricing structure. As a robustness check, we also incorporate the
possibility of a solar rebound that increases electricity consumption after the solar installation
(Oliver et al., 2024) and vary the assumed panel life T .46

Let TC(K) denote the total cost to a household of a solar installation of size K. It is comprised
of the fixed cost, FC and a cost per panel, V , charged by the installer. A per-kWh of solar
capacity rebate subsidy, S can reduce the upfront cost of the panels. The total cost of the
system net of rebates is reduced by a fraction I equal to the investment tax credit.47 Thus,
TC(K) = (K · (V − S) + FC) (1− I) = K · C + F. We define C = (V − S)(1− I) as the cost per
kilowatt of solar capacity faced by consumers (i.e., the post-subsidy variable cost of adding further
panels) and F = FC(1− I) as the fixed cost faced by consumers.

If the levelized cost of electricity generation from the marginal unit capacity is less than or equal
to the lowest electricity rate, p0, we assume that the household that purchases solar will optimally
install a system large enough to exactly offset all consumption.48 The household installs a minimum
installation of 5 panels (1.25 kW) if the levelized cost is greater than the highest grid electricity
rate, where 5 is the smallest observed installation size in the data. And if levelized costs of the
marginal solar capacity are less than the highest grid electricity rate but higher than the lowest grid
electricity rate, then the household optimally sizes the solar array to offset just the fraction of grid
electricity consumed at the highest rate.

Leased systems in the data are much more likely to be sized equal to current consumption, and
indeed the firm incentives are such that installers would prefer recommending the largest system
size up to fully offset consumption. Thus, we size purchased systems according to the optimal sizing
model, and leased systems according to full offset, which minimizes the absolute error in sizing. Fit
statistics are shown in Appendix Table H.2.

Let Q(K) be the quarterly electricity generated by a new solar system of size (installation
capacity) K (in units of kWh), and let λ be the quarterly depreciation of panels each quarter. We
define Q∗ as the annual electricity produced by a new system of optimal size K∗. Let q(K) = dQ

dK
be the marginal generation at size K, i.e., the electricity produced by an incremental kilowatt of
capacity. Following our descriptive evidence, we assume q(K) is weakly decreasing in K because
solar panels are installed first on the best (i.e., highest irradiance) ares of a rooftop. Thus, q(K) ≥ 0

and dq(K)
dK ≤ 0. Let the lifetime of the solar panel be given by T quarters.

We define a household’s initial grid consumption as Q0, such that for an installations producing
Q kW of electricity with Q(K) < Q0, the remaining grid consumption is Q0 −Q(K). The interior
solution to the sizing problem equates the present value of the lifetime stream of offset utility

46For our main results we do not include a solar rebound due to the fact that our model fit is better without
including the rebound effect. We find results are robust to shorter panel life assumptions, but the overall
model fit is better under T = 100 (25 years), the industry standard.

47We assume that all homeowners have sufficient tax liabilities to qualify for the 30% tax credit offered on
solar during this period.

48Excess generation under NEM policies not credited against a month with net withdrawal is compensated
at a negligible level after 12 months.
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payments that results from an additional unit of capacity to the cost of that capacity. :

C(K) =
T∑
t=1

(
(1 + ζ)(1− λ)

1 + r

)t−1

p(Q0 −Q(K))q(K), (13)

in which p(Q0−Q(K)) is the quarterly cost of the monthly marginal unit of electricity consumption,
r is the quarterly discount rate used for sizing, and ζ is the expected increase in real electricity
costs.49

We define:

c(K) =
C(K)(∑T

t=1

(
(1+ζ)(1−λ)

1+r

)t−1
q(K)

) , (14)

which is effectively an average, discounted price of solar electricity that consumers compare to the
price of grid electricity, p(Q0 −Q(K)), which accounts for the expected increases in both solar and
grid prices over time.

Because q is decreasing in K and p(Q0 −Q(K)) is decreasing in K with constant and increasing
block rate prices, there will be a unique solution to the first order condition (if any). With increasing
block prices, the first units of displaced grid electricity bear the highest marginal costs, and marginal
costs of displaced electricity decline discretely as solar capacity increases.50 The optimal size is
a function of upfront incentives and the feed-in-tariff rate, is increasing in q, p, S, and I, and is
decreasing in r and V .51

Because of the tiered nature of grid prices, the optimal sizing function is not always an interior
solution; it is a piece-wise function defined according to the number of tiers in the tariff structure.
We illustrate this in the context of a tariff with two distinct tiers of volumetric charges. We abstract
from consideration of fixed charges because we assume no households prefer to disconnect from the
grid. Let τ be the monthly grid consumption threshold at which rates change from p0 to p1 for
p0 < p1, and let q0 denote monthly household consumption.

The marginal price of grid electricity p depends upon the residual grid demand, i.e., consumption
net of solar generation, such that:

p =


0 Q0 −Q ≤ 0

p0 0 < Q0 −Q < τ

NSOp1 Q0 −Q ≥ τ

.

We define the minimum size installation considered as K = 1.25 kW. The piece-wise-defined
solution to the optimal sizing problem for increasing block rates and a household consuming at the

49We follow de Groote and Verboven (2019) by using a constant and deterministic value for ζ, which
we estimate using an AR(1) model with fixed effects. This can also be interpreted as assuming rational
expectations, discussed further in Section 5.2.

50For decreasing block prices, the opposite is true, and the interior optimum may not be unique.
51For the sizing model, we use the Google Sunroof default rate of 4%. This rate is considerably lower than

the household rates we estimate. However, the optimal sizing decision is generally not made by consumers
alone, but rather by the installation contractor who presents the cost and expected payoff when generating a
quote for homeowner consideration. Using a discount rate of 10% in sizing would result in more than half of
all installations receiving an optimal size of 5 panels, the smallest size reported by Google Sunroof, a figure
that is grossly incongrous with observed data. Optimal sizing also must assume an expected rate of increase
in electricity prices, which we estimate from the data, as described in Appendix D and apply to the sizing
decision.
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highest rate is defined as:

K∗ =



K c(0) > p1

q−1

(
C∑T

t=1

(
(1+ζ)(1−λ)

1+r

)t
p1

)
c(0) ≤ p1, c(Q0 − τ) ≥ p1

Q−1(Q0 − τ) p0 ≤ c(Q0 − τ) < p1

q−1

(
C∑T

t=1

(
(1+ζ)(1−λ)

1+r

)t
p0

)
c(Q− τ) < p0, c(Q0) ≥ p0

Q−1(Q0) c(Q0) ≤ p0

.

Figure B.1 depicts these cases, moving in order from the top curve to the bottom, for given
alternative q′s that define c. The weakly decreasing step function (indicated in red) is the levelized
cost of the marginal unit of grid electricity as a function of grid consumption, and the intersection
points with each curve indicates the generation from an optimally size installation. Solar generation
q(K) is increasing left to right, and remaining grid consumption is increasing right to left.

$/kWh

q generated from an installation q(K)

0.0625

0.125

0.1875

0.25

0.3125
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Figure B.1: Optimal sizing. Optimal sizing of solar PV arrays is depicted as a function
of alternative modeled q′ functions, i.e., the electricity generation of marginal units of solar
capacity. Depicted are the costs per kWh for alternative q′s and a tariff with two tiers of
volumetric charges. Grid consumption increases from right to left. Solar capacity increases
left to right.

Figure B.2 shows the fit of the optimal sizing model fit over purchased (left) and leased (right)
systems, which use the two different assumptions. For purchasers, we use the optimal sizing model,
and for leasors, we assume full offset. For non-adopters, we observe only the zip-level distribution
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Figure B.2: Sizing model accuracy. Density plot of Google Sunroof-method actual-
predicted installed system capacity for (orange) leased systems and (blue) purchased systems.

Table B.1: Optimal sizing model fit by type. This table reports the difference between
the predicted and actual observed installations. Positive numbers indicate sizing greater
than observed. Does not include reported installations with greater than 44 panels (95th
percentile).

Mean Sizing Error Mean Absolute Sizing Error

Type count panels % count panels %

Purchaser 2.01 10% 5.72 29%
Leaser 1.19 6% 4.97 24%
All 1.64 8% 5.38 27%

of consumption, and thus size each household conditional on consumption at one of five zip-level
consumption bins. In Figure B.3, we graphically present the sizing model fit using average annual
consumption (left) and the same sizing model fit using the closest consumption bin level for the
adopting household’s zip code. The horizontal striation on the right is due to discretization to the
nearest consumption bin. The right panel, despite not using actual consumption, provides a close
fit to observed installation sizes, despite the discretization.

Table B shows a low average error in sizing expressed in number of panels. The average error of
1-2 panels is 5-10% of the average installation size (20 panels). This is consistent with installers
using similar tools (electricity bills and roof profiles) and assumptions to size a system.

Our preferred sizing model does not account for rebound effects. As a robustness check, we
allow for rebound effect, which may either increase the amount for grid consumption, or it may lead
to larger panel sizes. For consumers not sizing their array to offset full consumption, any rebound
will be through increased grid consumption, if the marginal cost of electricity is reduced due to the
solar installation by placing the household on a lower rate tier. For consumers sizing their array to
offset full consumption, the levelized cost of added solar generation will be weakly less than the
cost of grid electricity, and there will be some scope to increase the size of the installation due to
rebound. To do so, we calculate the consumer surplus using a constant price elasticity of ε = .1
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and allow the system size to increase so long as the cost of the increase is lower than the increased
surplus. Details are in Appendix C.52

Figure B.3: Sizing model accuracy. Density plot of Google Sunroof-method actual-
predicted installed system capacity sized using (orange) actual consumption and (blue) using
assigned closest consumption bin.

C Sizing with Rebound

We account for rebound effects using a constant demand elasticity for electricity, ε. Let:

log(q) = ε log(p) + log

(
q0

(pH)ε

)
, (15)

in which the second term is an intercept that sets observed pre-installation consumption to q0 at
the observed pre-installation marginal price of electricity, pH . We can expect demand to increase by
∆q, which is the maximum value of r such that:

r ≤ −ε

(
pH − pL(r)

pH

)
q0, (16)

in which pL is the effective marginal electricity rate with rebound r using the discount rate used to
size the installation:

pL(r) = min
rS

min

p(q0 − q∗ + r − rS),
C/T

q′ (K(q∗ + rS))
(∑T

t=1
1

(1+δ)t

)
 , (17)

in which rS ≤ r is the amount of the rebound electricity generated from increasing the installation
size and q∗ is still defined as the optimal solar generation ignoring rebound. Let ∆qS be the
optimal amount of this rebound solar electricity. For households not offsetting full consumption

52When including rebound with a price elasticity of ε = .1, the mean error for purchasers increases to 16%,
while the mean absolute error increases to 32%. Thus, we use the no-rebound sizing model for our main
estimation due to the high degree of fit and little evidence of the systematic under-sizing that would indicate
sizing for rebound. We report results using ε = .1 in Appendix I.1.

51



with their installation, the entirety of the rebound effect is through higher grid consumption at
the new marginal rate, p(q0 − q∗ +∆q), and equation (16) holds with equality except at a point
in which the rebound pushes the household to the next price tier. For those households offsetting
full consumption prior to rebound, the cheapest increment of additional electricity may be (and
will almost always start with) the levelized marginal rate of additional solar electricity, but as the
installation size increases and the levelized cost or marginal generation increases, it may switch to
additional grid consumption.

For households whose rebound consumption is grid electricity (those who don’t offset their full
consumption), the value of the generated electricity in each period is equal to the offset cost of q∗

plus the added surplus from the rebound effect:

∆SR =

∫ pH

pL

q(p)dp− (pH − pL)q0 +

∫ q0+∆q−∆qS

q0

(pL − p(q − q∗))dq

=

∫ pH

pL

pε
q0

(pH)ε
dp− (pH − pL)q0 +

∫ q0+∆q−∆qS

q0

(pL − p(q − q∗))dq

=

((
1

1 + ε

)(
(pH)1+ε − (pL)

1+ε

(pH)ε

)
− (pH − pL)

)
q0

+

∫ q0+∆q−∆qS

q0

(pL − p(q − q∗))dq. (18)

The first two terms are the additional surplus of consumption when the cost of this electricity is pL.
The third term is equal to zero unless the rebound consumption is at multiple price levels (i.e. at
multiple price tiers), in which case we need to account for the fact that some of the grid rebound
consumption is at a price lower than PL.

Households who currently offset full consumption may consume from the grid, and they may not.
They will also increase the size of their installation, in which case we need to adjust this surplus
term by:

pL(q0 +∆qS)−
(
TC(K(q∗ +∆qS))− TC(K(q∗))

)
. (19)

This term is the levelized value of the solar rebound minus the cost. It is equal to zero if the
discount rate used in sizing is the same as that when making installation decisions. Since most
sizing decisions are heavily influenced by the installer (using a discount rate of 4%), we allow for
these to be different.

As a robustness check, we re-size the optimal sizing model using an elasticity of ε = .1, motivated
by the literature. We apply the rebound only to purchased systems under the assumption that
leased systems are sized to full consumption, as in the main body.

Relative to table B, sizing with rebound over-sizes purchased systems, leading to greater mean
sizing error (16%) and greater mean absolute error (32%). Leased systems are sized to offset full
consumption, and thus have the same error as in table B.

Nevertheless, we re-estimate our preferred specification and calculate the counterfactual-implied
elasticity as in 7. Results are in Appendix I
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Figure C.1: Sizing model with rebound accuracy. Density plot of Google Sunroof-
method actual-predicted installed system capacity sized using (orange) actual consumption
and (blue) using assigned closest consumption bin, both inclusive of rebound.

Figure C.2: Sizing model with rebound accuracy. Density plot of Google Sunroof-
method actual-predicted installed system capacity for (orange) leased systems and (blue)
purchased systems, both inclusive of rebound.

Table C.1: Optimal sizing model fit by type. This table reports the difference between
the predicted and actual observed installations. Positive numbers indicate sizing greater
than observed. Does not include reported installations with greater than 44 panels (95th
percentile).

Mean Sizing Error Mean Absolute Sizing Error

Type count panels % count panels %

Purchaser 3.13 16% 6.21 32%
Leaser 1.19 6% 4.97 24%
All 2.25 11% 5.65 28%
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D Estimation of Electricity and Solar Price Trends

D.1 Cost of Solar Installation

We need an estimate of the cost of adopting solar for all potential adoptions, which may be a function
of installation size, time, and location. To do so, we estimate the fixed and variable (per-watt)
components of price using TTS data for each boundary group and quarter in our sample. We
assume that the fixed price component will vary by boundary group, and that a common variable
price per watt will decline over time at a constant rate η, to be estimated. The decline of panel
prices on a per-watt basis is well-documented in the literature. Heterogeneous fixed costs reflect
relative wealth and cost of labor across the study areas.

We estimate the solar price model on a sample that includes our study period, as well as the
year prior (2013). We deflate costs using the Bureau of Labor Statistics quarterly CPI using the
fourth quarter of 2016 as the base period. Our decomposition of total reported price into fixed costs,
variable costs, and a common η uses the following specification, which we estimate by nonlinear
least squares (NLS):

SystemCostit =
∑
b

κb1b=b(i) + βWSystemWit · eβT (t−t0) + εit, (20)

in which SystemCost is the cost exclusive of subsidies or tax credits, SystemW is the size of the
system, t− t0 is the elapsed time since the beginning of the cost model estimation sample, Q1 of
2013.

Estimated fixed costs range from $998 to $1,622. Per-watt panel estimates start at $5.12 in the
first quarter of 2013, and decline at a rate of e−.014t. A value of βT = −.01403 yields an estimated
quarterly η = 0.986. We use the estimates in table D.1 to predict fixed and variable installation
costs for adopters and non-adopters.
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Table D.1: Cost Model Estimation: Results from estimation of equation 20 using the
sample of all installations in the study area during the study period and the previous year.
Results show boundary group-specific fixed cost intercepts κ, per-watt costs βW in first
quarter 2013, and quarterly rate of decline in per-watt costs, βT , where η = 1− βT = .986.
All costs are deflated using BLS CPI-U.

(1)

κA 1622.238
(154.807)

κB 1527.982
(244.818)

κC 1124.275
(185.183)

κD 1119.103
(164.510)

κE 998.059
(283.709)

κF 1212.440
(148.897)

βW 5.122
(0.034)

βT -.014
(0.000)

Num.Obs. 9163
Log.Lik. -89988.246

D.1.1 Solar Costs By Wealth

Installation costs are assumed to be constant across wealth and boundary zones, implying a value
of η (the quarterly expected decline in per-W solar panel costs) that is the same for each wealth
group. However, if low- or high-wealth households have systematically higher (or lower) costs,
or follow a different decline η, then our estimates may be biased. For instance, if low-wealth
solar-interested households receive fewer quotes from installers and thus face weakly higher prices,
then we may understate the up-front cost of solar for low-wealth households and incorrectly attribute
non-adoption to a higher discount rate. While our main specification includes fixed effects for
boundary zone by wealth, which would absorb the average effect, as well as any effect present in the
fixed costs, we further check for robustness of estimates for βT and βW .

We re-estimate our cost model in 20 but allow βW and βT to vary by wealth bin. We estimate
the model on the entire sample, as well as each boudnary zone individually. Table D.2 shows the
results. No significant difference is present for either βW , the per-W price of a solar installation,
though βW is significant at the 10% level in the pooled sample. The rate of decline of the per-W
price is significantly different for medium-wealth households in Zone A, but is not significant in the
pooled sample.
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Table D.2: Solar installation cost model estimated including interactions between
price per W and rate of decline with household wealth.

All Zone A Zone B Zone C Zone D

βT −0.014*** −0.015*** −0.013*** −0.013*** −0.014***

(0.001) (0.001) (0.001) (0.001) (0.001)

βLow
T −0.001 −0.002 0.010 −0.003 0.001

(0.002) (0.003) (0.007) (0.003) (0.003)

βMed
T −0.001 −0.005* −0.004 −0.001 0.001

(0.001) (0.002) (0.004) (0.002) (0.002)

κzone 1239.536*** 1866.265*** 310.137 1352.965*** 650.883**

(139.263) (250.792) (398.022) (291.438) (244.629)

βW 5.118*** 5.102*** 5.212*** 5.087*** 5.191***

(0.043) (0.082) (0.102) (0.098) (0.072)

βLow
W 0.182+ 0.190 −0.443 0.210 0.211

(0.095) (0.168) (0.408) (0.171) (0.183)

βMed
W 0.004 0.140 0.262 −0.051 0.028

(0.058) (0.134) (0.259) (0.106) (0.116)

Num.Obs. 8381 2989 1015 2256 2121

Log.Lik. −82 255.065 −29 412.288 −9954.212 −22 240.219 −20 592.283

+ p <0.1, * p <0.05, ** p <0.01, *** p <0.001
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D.2 Electricity Prices

We use an AR(1) model with fixed effects to estimate the expectation of the rate of increase in
average electricity rates for each consumption bin and in each zipcode’s CEC climate zone, ζb,z,
using deflated quarterly data. To account for CPUC orders requiring that the block-tiered price
system reduce the gap between high- and low-consumers that resulted in a significant one-time
decreases in tiers 3 and 4 and increases in tiers 1 and 2 which took effect in Q3 of 2014, we include
a break term in the AR(1) specification as follows:

avgpricet,bz = ζbzavgpricet−1,bz + ζbbzavgpricet−1,bz1(t = 2014Q3) + εt,bz (21)

Table D.3 shows results from equation 21. ζbz estimates range from 2.67 to 5.62 percent annually
(.66 to 1.37 percent quarterly).
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Table D.3: Electricity Rate Model Estimation: To estimate equation 21, we calculate
the average electricity rate for each quarter from Q1 2012 to Q3 2016, which captures the two
years prior to the study period. We calculate this average rate using annual consumption that
reflects the distribution of consumption in each zipcode and deflate using the BLS CPI-U.
For each level of consumption and CEC climate zone, designated by {S, T,X}, we calculate
the total variable cost portion of the bill and divide by the annual consumption. The unit of
observation is defined by the combinations of zipcode, consumption level, and CEC climate
zone. Consumption bin 5 is the highest quintile of consumption.

(1)

ζ1,S 1.012
(0.003)

ζ2,S 1.012
(0.003)

ζ3,S 1.013
(0.003)

ζ4,S 1.014
(0.003)

ζ5,S 1.007
(0.003)

ζ1,T 1.012
(0.002)

ζ2,T 1.012
(0.002)

ζ3,T 1.014
(0.002)

ζ4,T 1.011
(0.002)

ζ5,T 1.007
(0.002)

ζ1,X 1.012
(0.002)

ζ2,X 1.013
(0.002)

ζ3,X 1.012
(0.002)

ζ4,X 1.010
(0.002)

ζ5,X 1.008
(0.002)

Num.Obs. 3610
R2 0.999
R2 Adj. 0.999
Std.Errors HC Robust
Time step Quarterly
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E Number of Panels for a Given Level of Production

Figure E.1 shows the number of panels required (for observed installations) to produce 20 different
levels of solar output, q∗. This provides us with variation in the upfront costs, as installers
recommend the installation size that makes sense for the household given its irradiance, roof profile,
and electricity costs.

Figure E.1: The distribution of optimal K∗ (in panel counts) conditional on the quantity
of per-period offset electricity q∗. Data for K∗ is from observed installations while the
corresponding annual generation q∗ is from Google Project Sunroof. K∗ enters the adoption
decision as a variable up-front cost. Therefore, this figure represents the variation in up-front
cost associated with very narrow bands of per-period generation. This variation is solely from
roof orientation and irradiance.

F Lessor Model

Nearly 45% of adopters during our study period used a third-party “leased” system wherein the
lessor bears all up-front cost to install the rooftop system, and the lessee agrees to pay a price per
unit of consumption during the life of the lease. In terms of up-front costs and benefits over time,
the adoption decision for a lessee is distinctly different from that of a purchaser. Specifically, leasing
has the effect of amortizing the cost of installing over the life of the panels. We are the first in the
literature modeling solar demand to explicitly model the lease option.
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For leased systems, the economic value of the lease over its lifespan is:

δl1 = ωθq∗p̄− θppaq∗pppa, (22)

in which we define:

θppa =
T∑

τ=1

((1 + ζppa)(1− λ)ρ)(τ−1) , (23)

and in which pppa is the starting price of solar electricity and ζppa captures the annual change in
the electricity price guaranteed by the PPA, which we set at 0.04 based on industry standards (we
show the results from a robustness check using 0.03 in Appendix I.2).

We assume that the price the installer charges reflects the levelized cost of installing the system:

pppa =
C(K∗) + F

θIq∗
+markup, (24)

in which the θI captures the discounted sum of benefits per kWh using the installer’s implicit

discount rate, set at 6%: θI =
∑T

t=1

(
(1 + ζppa)(1− λ)ρI

)(t−1)
. We also allow for a transfer of

markup to the installer for fronting the installation costs. We parameterize this transfer by letting
κTC denote the profit margin based on the cost of providing the capital for the installation, and κp

a per-kWh markup. We can write (24) as:

pppa = (C(K∗) + F )(1 + κTC)
1

θIq∗
+ κp. (25)

The first multiplicative factor in (25) applies the markup to the installation cost and then divides
by θI , which amortizes the marked-up cost over 25 years at the installer’s implicit discount rate.
Finally, the amortized cost is divided by the per-period generation q∗, plus a per-kWh markup.

By substitution, for leased systems, the economic value of the lease over its lifespan can thus be
written:

δl1 = θq∗p̄− θppaq∗κp − θppa

θI
(1 + κTC)(C(K∗) + F ). (26)

We assume all of the markup is through the κTC , which captures the full resolution of pPPA

and set κTC = 0.7 based on the observed markup reported by a prominent solar leasing company’s
annual reports during our study period;53 correspondingly, we assume κP is equal to zero. These
assumptions together yield prices pppa that are consistent with observed lease terms, approximately
$0.18-0.19 per kWh (we have tested and found results that are robust to other combinations of κTC

and κPPA that together yield similar total markups).
We can write the value of leasing then as:

vl1 = ω
[
pEL − κlpINV

]
+Xβl. (27)

53See https://ir.tesla.com/press-release/solarcity-announces-first-quarter-2014-financial-results,
which states a markup of 50-55%. We assume markup is pre-ITC, and add 15% for the ITC to total 70%
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with κl ≡ θppa

θI
(1+κTC) capturing the relative tradeoff between upfront costs and long-term benefits

of solar when leasing vs. purchasing. Households with κl < 1 get more economic benefit from leasing
and households with κl > 1 get more economic benefit from purchasing.

G Estimation Details

G.1 Likelihood

Each non-adopter household is one of ten possible consumption × type combinations {1, ..., 5} ×
{leaser, purchaser}. We specify weights wibe as the probability that household i consumes in
consumption bin b and is of type e. With weights wibe, we integrate the likelihood function over the
unobserved heterogeneity. Restating Equation 12:

L =
∏
i

∑
b

wib

∑
e

wie|b
∏
t

[Preibt]
yit [1− Preibt]

(1−yit)

which requires evaluating ten conditional likelihoods per observation of household i and time t.
We posit the weights wibe as wib × wie, where the following adding up constraints apply:

∑2
e′=1wie′ = 1∑5
b′=1wib′ = 1∑
i∈z wib =

Nz
5 (28)

The first two constraints require that each household i have weights that sum across consumption
bin b and type e to equal 1. The constraint in 28 requires that, within a zipcode z, the weights
must sum to 1/5th of the number of households in the sample for that zipcode (due to the use of
quintiles). This guarantees that the moments of the consumption distribution match the empirical
distribution. Type e weights have no analogous restriction, only that they sum to unity.

The constraint in Equation (28) makes wibe dependent on wjbe for any i ∈ z, j ∈ z. Methods
of calculating these weights such as those in Arcidiacono and Miller (2011), though applicable
for type-weights in our context, are not appropriate for dependent weights, and an alternative is
employed here. To account for dependence, we integrate over randomly drawn allocations of b that
comport with the empirical distribution, which we describe below.

G.2 Estimation Procedure

Here, we describe the estimation of parameters θ = {ρ, ω, β}, weights wie|b and wib, and conditional
choice probabilities (CCP), the next-period probability of adopting. Following Arcidiacono and
Miller (2011) and Arcidiacono and Ellickson (2011), we also estimate π(e), the probability of being
of type e.54 We implement the expectation maximization (EM) algorithm which proceeds in two
stages, and update CCP’s in a third stage. First, the expectation stage in which weights wie|b and
wib and π(e) are calculated from the data conditional on an estimate of θ, and the maximization

54Note that no analogous π is estimated for consumption bin as, by construction, the probability of being
in bin b is 0.2.
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step in which θ is estimated conditional on taking weights and π(e) as fixed. Finally, CCP’s are
updated using updated type and bin weights.

G.2.1 Step 1: Initialization

1. Estimate CCP’s using a weighted flexible logit described in the following section. Doing so
requires weights wibe over type e and consumption b, which are initialized to .1 for non-adopters
and 1 for adopters for their observed type and consumption and zero otherwise. Then, use
the flexible logit to predict the next-period probability of adopting, Pre

′
ibe (see below).

2. Initialize parameters to be estimated in the maximization step θ̂(0), π̂(0)(e) = .475 for e = leaser
(implying π̂(purchaser) = 1−π̂(leaser)). This initialization reflects the proportion of observed
adoptions that are leases in the data. Set m = 0 for notation.

3. Draw R = 1000 random allocations of b that place 1
5 of the non-adopting households into each

bin, guaranteeing that b(r), the rth allocation, satisfies the constraint in 28 for each allocation
r.

4. Evaluate the conditional likelihood Libe for every {b, e} combination for every household i
using θ̂(0) and equation 11.

5. Calculate wie|b, the type-weight, as w
(0)
ie|b =

π̂(0)(e)Libe∑
e′ π̂

(0)(e′)Libe′

G.2.2 Step 2: Maximization

Take type-weights and CCP’s as fixed within the maximization step. For each evaluation of θ, the
likelihood is calculated in the following steps:

1. Calculate Lib =
∑

e′ wie|bLibe using type-weights from step 1.

2. Turning to the b weights, for each r, calculate the likelihood of observing r conditional on the
parameters and wie|b. To do so, take the product of Lib(r) where Lib(r) is the likelihood for
household i conditional on being in the bin drawn in allocation r. Formally, Lr = ΠiLib(r)

3. Calculate allocation weights w
(r)
z = Lr∑

r′ Lr′

(a) Note that allocations r where households are allocated to consumption bins b that better
explain the observed outcome are weighted higher than allocations that poorly explain
the observed outcome. All weights sum to 1 within household i, and all weights satisfy
Equation (28) by definition.

4. Calculate Lz =
∑

r w
(r)
z Lr

5. Maximize the log-likelihood L =
∑

z log(Lz)

Upon convergence, the maximization step yields updated θ̂(m+1).
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G.2.3 Step 3: Expectation

Weights w
(m)
ie|b and π̂(m)(e) are then updated following Arcidiacono and Ellickson (2011) and using

Libe(θ̂
(m+1)).

1. Calculate w
(m+1)
ie|b = π̂(m)(e)Libe∑

e′ π̂
(m)(e′)Libe′

2. Calculate w
(m+1)
ib =

∑
r′ 1(b

(r′)
i = b)w

(r′)
z

3. Calculate w
(m+1)
ibe = w

(m+1)
ie|b w

(m+1)
ib

4. Calculate π̂(e)(m+1) =
∑

i 1(e
′=e)w

(m+1)

ibe′∑
i

∑
e w

(m+1)
ibe

, the mean type-weight across non-adopting households,

weighted by the household’s bin weight.

G.2.4 Iterate Steps 2-3

Re-estimate the weighted flexible logit using updated w
(m+1)
ibe and update CCP’s. Repeat steps 2-3

until convergence both in the maximization step and the expectation step, as in Arcidiacono and
Ellickson (2011). Convergence overall requires convergence in (i) θ̂, (ii) π̂(e), and (iii) CCP s.

G.3 Conditional Choice Probabilities

In estimation we utilize the state transition estimates shown in Appendix D. The final component
of equation (12) is the conditional choice probability (CCP), which is the predicted probabilities
of adopting in the next period. We again follow Arcidiacono and Miller (2011) and use a flexible
logit to estimate the probability of adopting for household h at time t.55 Weights wibe are used in
the flexible logit and a separate probability of adopting is estimated for leasers and purchasers. In
estimation, the next-period probability of adopting Pre

′
ibe is updated in a third step using updates

of wibe to re-weight the logit estimation and following the update of the weights.
The flexible logit is specified using all interactions of square footage, length of residence, voter

affiliation, presence of children, race, quarterly savings q∗p̄, net system cost C(K∗), consumption
bin b, and a second degree polynomial in time. We also include a 3rd degree polynomial in time
and boundary-zone fixed effects. The CCP’s (predicted probabilities of adopting in the next period)
are generated by advancing the time by 1 period (including advancing p̄ by ζ and C(K∗) by η) and
predicting the logit response. As a robustness check, we also generate CCP’s using the next-period
state of {p̄, C(K∗)} (see Appendix I.7).

G.4 Estimation Transformations

The parameters of ωi are estimated with an exponential transformation

ωi = eω0+ωmed1(wealthi=med)+ωlow1(wealthi=low).

55A bin estimator would be feasible, but components of Equation 9 and the leaser analogue are continuous
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The parameters of ρi, the household discount factor, are estimated with a Normal cdf transfor-
mation:

ρi = Φ(ρ0 + αmed1{wealthi=med}+ αlow1{wealthi=low}).

Similar functional forms are used when credit data is incorporated into ρi (see Appendix J.1).
All dollar amounts are scaled to be in thousands of dollars.
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H Structural Parameter Results

The full set of results are shown in Table H.1. In addition to the results discussed in the main text,
we find that length of residence and the number of children are negative but insignificant. While
previous literature has indicated these demographics correlate with adoption, these other papers did
not condiiton on the economic value of adopting solar.56 We condition on the house being listed as
owner-occupied in the Corelogic data, but not all of these are coded as owner-occupied in InfoUSA;
the indicator for being listed as non-owner-occupied in the InfoUSA data has a large and significant
negative intercept. Square footage is positive in the linear term and close to zero in the quadratic,
while 2+ stories is negative indicating single-story homes receive more utility from adopting relative
to equal-sized two-story homes, possibly due to greater roof area for optimal solar panel siting.

The ι terms capture differential effects across boundary zones A through D (A is the omitted
category) across wealth and type, which is of particular concern if solar installers use wealth for lead
generation or targeting. Intercept shifts for consumption bins show a U-shaped form: the lowest
consumption bin, ϕbin1 is closest to the omitted category, bin 5, while ϕbin2 is the lowest. This is
consistent with households that are highly energy-cognizant investing in energy efficiency and solar
adoption. Consumption bin intercept shifts for leases are positive, but only one is significant, and
then only at the 10% level.

56The lack of significance (and negative sign) may also be the result of conditioning on wealth and
consumption since households with children tend to have higher consumption. Households with longer length
of residence tend to be higher wealth as well.
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Table H.1: Structural parameter results (untransformed)

Param. Grp Parameter Estimate se t pval

ω0 -2.932 0.439 -6.678 0.000 ***

ωmed 1.548 0.413 3.744 0.000 ***
ω

ωlow 2.223 0.577 3.856 0.000 ***

ρ0 1.951 0.001 1863.326 0.000 ***

αmed -0.147 0.355 -0.415 0.678
ρ

αlow -0.189 0.006 -29.325 0.000 ***

β0 25.094 0.526 47.693 0.000 ***

Wealth: middle 1/3rd -5.609 1.901 -2.950 0.003 **

Wealth: lowest 1/3rd -4.621 0.889 -5.201 0.000 ***

Lease -14.330 5.313 -2.697 0.007 **

Lease x Wealth: middle 1/3rd 5.106 0.070 72.641 0.000 ***

Lease x Wealth: lowest 1/3rd 4.921 0.341 14.451 0.000 ***

Voter affiliation: D -1.725 0.087 -19.912 0.000 ***

Voter affiliation: D + lease 2.111 0.964 2.190 0.029 *

Has 1 or more lines of credit 1.829 0.084 21.722 0.000 ***

Lines of credit 0.776 0.399 1.945 0.052 .

Length of residence -0.349 0.184 -1.893 0.058 .

Has children -0.307 1.429 -0.215 0.830

Listed as renter-occupied in InfoUSA -35.760 0.158 -226.558 0.000 ***

Sqft (1,000’s) 3.777 0.145 26.108 0.000 ***

Sqft2 (1,000’s) -0.311 0.092 -3.388 0.001 ***

β

Stories -4.430 1.829 -2.422 0.015 *

ιB -6.709 0.490 -13.702 0.000 ***

ιC 4.615 0.687 6.720 0.000 ***

ιD 1.829 0.667 2.743 0.006 **

Wealth: lowest 1/3rd: ιB 10.489 0.182 57.783 0.000 ***

Wealth: middle 1/3rd: ιB 6.259 0.489 12.809 0.000 ***

Wealth: lowest 1/3rd: ιC 0.996 0.684 1.456 0.145

Wealth: middle 1/3rd: ιC -5.615 0.657 -8.553 0.000 ***

Wealth: lowest 1/3rd: ιD 1.910 3.072 0.622 0.534

Wealth: middle 1/3rd: ιD -4.093 0.543 -7.545 0.000 ***

Wealth: lowest 1/3rd x Lease: ιB,lease 1.636 0.459 3.567 0.000 ***

Wealth: lowest 1/3rd x Lease: ιC,lease -1.336 0.688 -1.942 0.052 .

ιarea

Wealth: lowest 1/3rd x Lease: ιD,lease -1.667 0.203 -8.194 0.000 ***

ϕbin1 -2.816 0.667 -4.224 0.000 ***

ϕbin2 -8.599 0.367 -23.440 0.000 ***

ϕbin3 -5.839 0.263 -22.181 0.000 ***

ϕbin4 -3.858 0.901 -4.283 0.000 ***

ϕbin1,lease 2.128 0.349 6.101 0.000 ***

ϕbin2,lease 2.799 0.363 7.709 0.000 ***

ϕbin3,lease 2.886 1.068 2.701 0.007 **

ϕconsumption

ϕbin4,lease 1.430 1.576 0.908 0.364

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Includes time fixed effects. Robust std. errors from Arcidiacono and Miller (2011)66



Table H.2: Model predicted and actual adoption shares

Total Purchases Leases

Wealth Households Predicted Actual Predicted:Actual Predicted Actual Predicted:Actual Predicted Actual Predicted:Actual

High 61,229 2,545 2,445 1.041 1,682 1,553 1.083 863 892 0.967
Med 61,223 3,091 3,052 1.013 1,555 1,540 1.010 1,536 1,512 1.016
Low 61,215 1,777 1,747 1.017 686 711 0.965 1,091 1,036 1.053
All 183,667 7,413 7,244 1.023 3,923 3,804 1.031 3,490 3,440 1.015

To assess model fit, we use parameter estimates in Table H.1 to predict adoption probabilities
for each household, time period, consumption bin, and type. We then calculate the probability of
adoption within the study period as one minus the product of the probability of non-adoption in
each time period. We then aggregate across consumption bin and type for each household using the
weights from estimation. As in estimation, for adopters we observe the type (leaser vs. purchaser)
and consumption bin with certainty, which is reflected in the weights. Finally, we aggregate by
wealth bins and type to summarize total predicted adoption during the study period, which can be
directly compared to observed adoptions. While our consumption bin weights are restricted to reflect
the zip-level distribution of consumption, our type weights (leaser vs. purchaser) are unrestricted.
We find little separation, with a mean lease-type weight of 0.486 and a standard deviation of 0.036.

We further assess model fit by examining the ratio of predicted to actual installations (as
described above) by zipcode. Results reveal no systematic bias in wealth across zipcodes. Zipcodes
with lower numbers of households in wealth bins (left side of plot H.1) are less accurate, but zipcodes
with larger numbers of households are more accurate.

Figure H.1: Model fit. Ratio of predicted to observed installations by zip and wealth. Points
near to 1 represent zip x wealth combinations with accurate predictions. Note that 7 zip x
wealth bins with zero adoptions are omitted here.
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I Robustness Checks

I.1 Model Estimates with Rebound

We resize optimal installations assuming a rebound of ε = .1 for purchased systems, holding leased
systems sized to full offset as before (see Appendix C for sizing results). Using updated sizes, we
re-estimate the model. Results are largely robust to sizing with rebound and are qualitatively
identical to results presented above. With resizing, the estimated implicit discount rates across
wealth are 10.2%, 14.7%, and 16.2%, which can be compared to results in Table 2 of 10.9%, 15.6%,
and 17.2%. Differences between high- and low-wealth household implicit discount rates remain
significant. While estimated implicit discount rates are lower at all wealth levels, the ratio of θ for
high to low wealth remains identical at 1.5.

Table I.1: Implicit Discount Rates: Rebound elasticity for ε = .1

Wealth Marginal Utility of Income Annual Discount Rate ¯̄θ Ratio

High 0.07 (0.03) 10.2% (0.03%) 51.7 1.5
Med 0.28 (0.19) 14.7% (14.14%) 37.1 1.1
Low 0.51 (0.34) 16.2% (0.14%) 33.8 1

All 13.7% 40.9 –

Heteroskedasticity-robust standard errors in parentheses calculated by delta method. The
difference between the high-wealth and low-wealth underlying marginal utility of income
structural parameters is statistically significant, with a p-value of < 0.0001. The difference
between the high-wealth and low-wealth underlying implicit discount rate structural parame-
ters is statistically significant, with a p-value < 0.0001.

I.2 Model Estimates with Alternative Increase in Power Purchase
Rates

We assume the rate of increase in power purchase rates for leased systems is contracted at 4% (see
Equation 23), and in this section, we sensitivity test this assumption using ζPPA ∈ {.03, .05}. Based
on the data, we assume lease customers are assumed to size to full offset. Thus, we do not re-size
under the alternative values of ζPPA.

Results are qualitatively similar on implicit discount rates, with ζPPA = .03 resulting in estimated
implicit discount rates of 10.8%, 15.5%, and 17.1% for high, medium, and low-wealth households.
At ζPPA = .05, estimated rates are 8.5%, 12.4%, and 13.7%, slightly lower than main estimates of
10.9%, 15.6%, and 17.2%.

68



Table I.2: Implicit Discount Rates: ζPPA = .03

Wealth Marginal Utility of Income Annual Discount Rate ¯̄θ Ratio

High 0.06 (0.03) 10.8% (0.03%) 49.2 1.5
Med 0.25 (0.18) 15.5% (13.37%) 35.2 1.1
Low 0.47 (0.36) 17.1% (0.22%) 32.0 1

All 14.4% 38.8 –

Heteroskedasticity-robust standard errors in parentheses calculated by delta method. The
difference between the high-wealth and low-wealth underlying marginal utility of income
structural parameters is statistically significant, with a p-value of < 0.0001. The difference
between the high-wealth and low-wealth underlying discount rate structural parameters is
statistically significant, with a p-value of < 0.0001.

Table I.3: Implicit Discount Rates: ζPPA = .05

Wealth Marginal Utility of Income Annual Discount Rate ¯̄θ Ratio

High 0.06 (0.03) 8.5% (0.02%) 60.1 1.5
Med 0.35 (0.24) 12.4% (10.17%) 43.6 1.1
Low 0.53 (0.36) 13.7% (0.07%) 39.9 1

All 11.5% 47.8 –

Heteroskedasticity-robust standard errors in parentheses calculated by delta method. The
difference between the high-wealth and low-wealth underlying marginal utility of income
structural parameters is statistically significant, with a p-value of < 0.0001. The difference
between the high-wealth and low-wealth underlying discount rate structural parameters is
statistically significant, with a p-value of < 0.0001.

I.3 Model Estimates with Alternative Scaling of η, ζ

In our main results, we estimate a value of η, the rate of decline of variable panel costs, from
the data. We also estimate a zip code x consumption bin-specific value of ζ, the rate of increase
in average electricity price. These estimates form the consumer expectations of future panel and
avoided electricity rates associated with sizing and adopting. We sensitivity test around these results
by scaling both η and ζbz by ± 10%, and by setting ζbz equal to a rate of 2.2% per year, a factor
commonly used by solar installers for sizing calculations and used by Google Project Sunroof in
calculating savings.

Estimated implicit discount rates for all three are little changed. Scaling η, ζbz by a factor of 1.1
results in estimated rates of 10.7%, 15.2%, and 16.8%, nearly identical to the main results. Scaling
by a factor of .9 results in estimated rates of 10.6%, 15.3%, and 16.9% for high, medium, and
low-wealth households, also nearly identical to the main results.
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Table I.4: Implicit Discount Rates with scaled-up ζ, η

Wealth Marginal Utility of Income Annual Discount Rate ¯̄θ Ratio

High 0.06 (0.03) 10.7% (0.03%) 51.8 1.5
Med 0.25 (0.18) 15.2% (13.20%) 37.0 1.1
Low 0.48 (0.34) 16.8% (0.19%) 33.5 1

All 14.2% 40.8 –

Heteroskedasticity-robust standard errors in parentheses calculated by delta method. The
difference between the high-wealth and low-wealth underlying marginal utility of income
structural parameters is statistically significant, with a p-value of < 0.0001. The difference
between the high-wealth and low-wealth underlying discount rate structural parameters is
statistically significant, with a p-value of < 0.0001.

Table I.5: Implicit Discount Rates with scaled-down ζ, η

Wealth Marginal Utility of Income Annual Discount Rate ¯̄θ Ratio

High 0.11 (0.04) 10.6% (0.02%) 48.0 1.5
Med 0.31 (0.13) 15.3% (14.71%) 34.5 1.1
Low 0.55 (0.33) 16.9% (0.16%) 31.5 1

All 14.2% 38.0 –

Heteroskedasticity-robust standard errors in parentheses calculated by delta method. The
difference between the high-wealth and low-wealth underlying marginal utility of income
structural parameters is not statistically significant, with a p-value of 0.754. The difference
between the high-wealth and low-wealth underlying discount rate structural parameters is
statistically significant, with a p-value of < 0.0001.

Setting ζbz = 2.2% for all consumption bins and areas primarily removes cross-sectional variation
in energy price trends across consumption bins. Estimated implicit discount rates are nearly
unchanged at 10.7%, 15.4%, and 17.1% for high-, medium-, and low-wealth households relative to
our main results of 10.9%, 15.6%, and 17.2%, respectively.

Table I.6: Implicit Discount Rates with ζ = 2.2%

Wealth Marginal Utility of Income Annual Discount Rate ¯̄θ Ratio

High 0.11 (0.04) 10.7% (0.03%) 41.0 1.5
Med 0.35 (0.17) 15.4% (13.63%) 30.1 1.1
Low 0.56 (0.26) 17.1% (0.10%) 27.5 1

All 14.4% 32.9 –

Heteroskedasticity-robust standard errors in parentheses calculated by delta method. The
difference between the high-wealth and low-wealth underlying marginal utility of income
structural parameters is statistically significant, with a p-value of < 0.0001. The difference
between the high-wealth and low-wealth underlying discount rate structural parameters is
statistically significant, with a p-value of < 0.0001.
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I.4 Model Estimates assuming T = 22

To test sensitivity of our results to the assumption on panel life, we set assumed panel life to T = 22.
Panel life enters both the sizing model and the estimation of θ; here we set T = 22 in both to
maintain consistency.

Results are highly similar to main results. Estimated implicit discount rates across wealth
are 11.2%, 16.1%, and 17.9%, slightly higher than main results. The ratio of average θ between
household wealth bins of 1.5:1 and 1.1:1 is nearly identical to the main results.

Table I.7: Implicit Discount Rates Assuming Panel Life T = 22.

Wealth Marginal Utility of Income Annual Discount Rate ¯̄θ Ratio

High 0.11 (0.02) 11.2% (0.02%) 45.5 1.5
Med 0.33 (0.09) 16.1% (13.62%) 33.0 1.1
Low 0.55 (0.22) 17.9% (0.14%) 30.0 1

All 15% 36.2 –

Heteroskedasticity-robust standard errors in parentheses calculated by delta method. The
difference between the high-wealth and low-wealth underlying marginal utility of income
structural parameters is statistically significant, with a p-value of < 0.0001. The difference
between the high-wealth and low-wealth underlying discount rate structural parameters is
statistically significant, with a p-value of < 0.0001.

I.5 Model Estimates including Race Covariates

Data from InfoUSA allow us to extract race and ethnicity for each household head. We group all
households into four groups: Hispanic, White (non-Hispanic), Asian, and Black/Mixed and include
indicators for this race variable in estimation. We allow indirect utility for adopting to vary by race
interacted with wealth bins, but do not interact it with implicit discount rate or marginal utility of
income. Race is not used in the sizing model, and enters only in the adoption model.

Results are similar to main results, though slightly higher across all wealth bins. Estimated
implicit discount rates across wealth are 13.0%, 18.4%, and 20.4%, while the ratio of average θ
between household wealth bins of 1.6:1 and 1.1:1 remains nearly identical to the main results.

Table I.8: Implicit Discount Rates Including Race Covariates

Wealth Marginal Utility of Income Annual Discount Rate ¯̄θ Ratio

High 0.02 (0.03) 13.0% (0.11%) 41.7 1.6
Med 0.23 (0.16) 18.4% (2.13%) 29.7 1.1
Low 0.49 (0.95) 20.4% (0.89%) 26.8 1

All 17.2% 32.7 –

Heteroskedasticity-robust standard errors in parentheses, calculated by delta method. The
difference between the high-wealth and low-wealth underlying marginal utility of income
structural parameters is statistically significant, with a p-value < 0.0001. The difference
between the high-wealth and low-wealth underlying implicit discount rate structural parame-
ters is statistically significant, with a p-value of < 0.0001.
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I.6 Model Estimates Assuming Finite Time Horizon

We re-estimate the adoption model as a finite time model as in de Groote and Verboven (2019),
which implicitly constrains the value function to include zero utility and zero continuation value at
the end of the 25-year lifespan of the panels. In contrast, our main specification assumes re-adoption
at T = 100 quarters. Results in Table I.9 imply higher implicit discount rates than our main results.
The ratio between high- and low-wealth households valuation of the flow of NEM benefits, captured
by θ, are slightly higher (1.6:1) than the main specification results of 1.5:1.

Table I.9: Implicit Discount Rates Estimated Assuming Finite Time Model

Wealth Marginal Utility of Income Annual Discount Rate ¯̄θ Ratio

High 0.01 (0) 13.0% (0.04%) 41.7 1.6
Med 0.17 (0.14) 18.7% (13.13%) 29.2 1.1
Low 0.43 (0.62) 20.6% (0.60%) 26.5 1

All 17.3% 32.5 –

Heteroskedasticity-robust standard errors in parentheses calculated by delta method. The
difference between the high-wealth and low-wealth underlying marginal utility of income
structural parameters is statistically significant, with a p-value of < 0.0001. The difference
between the high-wealth and low-wealth underlying discount rate structural parameters is
statistically significant, with a p-value of < 0.0001.

I.7 Model Estimates Using Next-Period Realized State Values

In our main specification, we estimate CCP’s from a first-stage flexible logit and generate Pr′

terms (next-period probability of adoption) by advancing all state variables by the expected ζ, η, t.
As an alternative, we generate Pr′ terms instead by taking the one-period lead of the model’s
predicted probability of adopting. This assumes that individuals know and anticipate the next-period
realizations of p̄ and C(K∗).

Results in I.10 indicate slightly higher estimated discount rates of 12.5% to 20.5%. The ratio of
high-wealth to low-wealth θ remains close to the main specification at 1.6:1.
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Table I.10: Implicit Discount Rates Estimated with Next-Period Realized State Values for
Conditional Choice Probabilities

Wealth Marginal Utility of Income Annual Discount Rate ¯̄θ Ratio

High 0.003 (0.003) 12.5% (0.06%) 43.1 1.6
Med 0.221 (0.22) 18.3% (16.58%) 29.8 1.1
Low 0.485 (2.56) 20.5% (2.59%) 26.7 1

All 17% 33.2 –

Heteroskedasticity-robust standard errors in parentheses calculated by delta
method. The difference between the high-wealth and low-wealth underlying
marginal utility of income structural parameters is not statistically significant,
with a p-value of 0.256. The difference between the high-wealth and low-wealth
underlying discount rate structural parameters is statistically significant, with
a p-value of < 0.0001.
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J Details on Borrowing Costs and Expectations

J.1 Potential Role of Borrowing Costs

One explanation for the heterogeneous implicit rates we estimate may come from credit constraints
that induce higher borrowing costs. Although our sample households are all homeowners who
would be expected to have access to home equity lines of credit (which is one of our controls),
credit constraints may still drive our results. To explore this possibility, we merge our sample with
household-level credit data from Experian based on the household address.

We obtain a 63% match rate with Experian data. Of those matching, only 6.7% have credit
scores in the sub-prime (less than 680) or near-prime (less than 780) range, which we consider to
be “poor” credit. Adopters have a slightly smaller share of poor credit at 5.9%. Poor credit is
more prevalent in low-wealth households (12.4%) and medium-wealth households (6.0%) relative to
high-wealth households (2.7%). Thus, we construct a binary indicator for poor credit, and another
binary indicator for un-matched households.

We estimate our model incorporating credit data and show that heterogeneity across wealth is
persistent, even conditional on credit. The intent here is to flexibly control for the credit-induced
cost of borrowing, allowing for a comparison across wealth conditional on prime-or-better credit. We
augment the specification shown in Section 6.4 with interactions between poor credit and wealth, as
well as interactions between un-matched status and wealth. Due to the small share of high-wealth
households that have poor credit, we restrict the effect of poor credit to be zero for high-wealth
households. We include intercept, lease intercept, and marginal utility of income (ω) interactions
for poor credit as well, all interacted with low- or medium-wealth. We fully interact ‘missing’ status
with wealth in intercept, lease intercept, and discount rate.

The results in J.1 suggest that credit constraints do not explain heterogeneity in discount rates.
We estimate conditional (on prime or better credit) implicit discount rates of 15.9% to 25.2%
(high-wealth and low-wealth, respectively). Even when we control for credit-by-wealth interactions,
the difference in implicit discount rates between low-wealth and high-wealth households is still
statistically significant, though substantially higher. Importantly, the θ̄ ratio is nearly identical to
our main results at 1.6:1, showing that even for homeowners with excellent credit (and thus would
presumably have access to ample credit), there are notable differences in implicit discount rates.
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Table J.1: Implicit Discount Rates Estimated with Interacted Controls for Credit

Wealth Credit Marginal Utility of Income Annual Discount Rate ¯̄θ Ratio

High All 0.0012 (8e-04) 15.9% (0.28%) 34.2 1.6
Med ≥ Prime 6e-04 (0.0021) 15.9% (1.69%) 34.2 1.6
Low ≥ Prime 0.167 (0.1079) 25.2% (0.46%) 21.6 1

Med Poor 0.209 (1.1268) 29.4% (10.88%) 18.5 2.1
Low Poor 0.1146 (0.2899) 66.2% (55.06%) 9.0 1

All 20.1% 29.6 –

All values are conditional on matching household credit (63% of sample). Heteroskedasticity-robust
standard errors in parentheses, calculated by delta method. The difference between the high-wealth
and low-wealth underlying marginal utility of income structural parameters is statistically significant,
with a p-value of < 0.0001. Though the point estimates are non-monotonic in wealth between high-
and medium-wealth underlying marginal utility of income structural parameters, the difference between
them is not statistically significant, with a p-value of 0.087. The difference between the high-wealth
and low-wealth underlying discount rate structural parameters for prime or better credit is statistically
significant, with a p-value of < 0.0001.

J.2 Survey Evidence on Home Tenure Expectations

To better understand consumer expectations about the length of time they will live in their
current home, we draw upon evidence from Bollinger et al. (2025). That study runs a nationwide
representative survey using the vendor Dynata. There was a screening requirement for participants
to be considering purchasing (or have recently purchased) either solar panels or an electric vehicle.
There are also results restricted to homeowners. The final sample of 3,305 respondents, of which
1,673 are homeowners. All but one homeowner answered the income question (non-homeowners were
more likely to not respond to the income question). Figure J.1 presents the fraction of responses
in an income bin by the expected home tenure bin (there are five possible bins they could choose
from). In other words, on the far left we see that roughly 32% of households making over $150,000
per year expect to stay in their home more than 20 years. A key takeaway from this figure is that
a similar fraction of households expect to stay in their homes for over 20 years across all income
groups. Broadly, the figure shows similar patterns, with some increase in very short tenures from
the lowest-income group, possibly due to retirees who do not expect to stay long in their home.
Note that few homeowners earn under $50,000 a year in California, so we are not very concerned
about this result.

There are also similar expectations across income groups for future electricity price growth, as
can be seen in Figure J.2 below. There is an extremely similar figure for expectations of future solar
prices as well (Figure J.3). In short, the evidence suggests that there are negligible differences across
wealth groups in expectations of home tenure, future electricity prices, and future electricity prices.
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Figure J.1: National Survey. Expectation to stay in current residence by income.

Figure J.2: National Survey. Expected electricity prices by income.
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Figure J.3: National Survey. Expected solar prices by income.
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K Counterfactual Methodology

K.1 Counterfactual Methods

All counterfactual scenarios report the ratio of predicted counterfactual adoptions to baseline
predicted adoptions occurring within the study sample and during the study period. In all cases,
we calculate adoption as one minus the joint probability of choosing “do not adopt” in each of
the 10 time periods in the study window. This allows us to report the total number of adoptions
predicted over the period, rather than examining across time periods. In the following, we dive into
the details of the counterfactual methodology.

The value of adoption, δ1, is a terminal state and so there is no continuation value. To calculate
δ0, we need to calculate the value function. We do this by taking the infinite sum given in 1. In
practice, we forward simulate the state variables many periods in the future (S periods), assume
V (pS , V CS , FCS) = δ1(pS , V CS , FCS) (i.e. treat the value as if everyone who had not yet adopted
solar at period S purchases solar), which is a benign assumption if S is large enough. We then then
backward iterate to calculate δ0 in the current period using the below expression for the inclusive
value of adoption in each period:

E [max(δ0 + σϵ0, δ1 + σϵ1)]

= σE [max(δ0/σ + ϵ0, δ1/σ + ϵ1)]

= σ [log (exp(δ0/σ) + exp(δ1/σ)) + γ] (29)

Under counterfactual regimes, we must account for the fact that the probability of adopting in
the next period will also change. I.e., counterfactuals require counterfactual CCP’s – as the utility
payoff of adopting changes (in one or all periods), the probability of adopting in the next period
also changes. Here, we use model estimates to update both δ1 − δ0 and log(Pr′) as well.

Our strategy for calculating counterfactual log(Pr′+) is to calculate the difference in adoption
utility implied by the estimated parameters of the model. Arcidiacono and Miller (2020) discuss
identification of counterfactual CCPs and show conditions under which counterfactual CCPs are
identified. Single action finite dependence (which holds if the distribution of states does not depend
on the initial choice for a particular action) is one such assumption. Under our counterfactual, we
continue with our assumption that households’ expectations are correct excepting a short term
prediction error (as in Scott (2014) and de Groote and Verboven (2019)) using the same solar and
electricity price trends that existed in the current environment.

We write future changes in the probability of adopting as an infinite series of (known) flow
utility payoffs. Let A capture the scaled (by 1/σ) utility of adopting today relative to the discounted
utility of adopting tomorrow, A = (u− ρu′)/σ, and B capture the next period adoption probability
and Euler-Mascheroni constant, so that we can write the value of adopting as:

1

σ
(δ1 − δ0) =

A︷ ︸︸ ︷
1

σ
(1− ρ(1 + ζ))θq∗p̄− 1

σ
(1− ρ)FC − 1

σ
(1− ρη)V C +

1

σ
(1− ρ)Xβ

+ ρ
(
log(Pr′)− γ

)︸ ︷︷ ︸
B

Under each counterfactual scenario, we change the utility of adopting today by ∆u and the
expected utility of adopting tomorrow by ∆u′, so that ∆A = (∆u− ρ∆u′) /σ.
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The counterfactual change in the probability of adopting, Pr+, is determined by the change in
A plus the change in B:

Pr+ = Λ

(
1

σ
(δ1 − δ0) + ∆A+∆B

)
(30)

Note we can write:

Λ−1(Pr) = log

(
Pr

1− Pr

)
and thus

log(Pr′) = Λ−1(Pr′) + log(1− Pr′)

=
1

σ

(
δ′1 − δ′0

)
+ log(1− Pr′), (31)

where δ′1 is the next-period utility of adopting and δ′0 is the next period utility of non-adoption.
Using this expression, we can write B as:

B = ρ(log(Pr′)− γ) = ρ

(
1

σ
(δ′1 − δ′0) + log(1− Pr′)

)
− ργ

and we can write B+ (the value of B under the counterfactual) as:

B+ = ρ
(
log(Pr′+)− γ

)
= ρ

(
1

σ
(δ′+1 − δ′+0 ) + log(1− Pr′+)

)
− ργ

By plugging in the values for δ and δ+, we can write the change in B as:

∆B = B+ −B

= ρ

(
1

σ
(δ′1 − δ′0) + ∆A′ +∆B′ + log(1− Pr′+)

)
− ργ −B

= ρ

(
1

σ
(δ′1 − δ′0) + ∆A′ + ρ(log(Pr

′′+)− log(Pr
′′
)) + log(1− Pr′+)

)
− ργ

−ρ

(
1

σ
(δ′1 − δ′0) + log(1− Pr′)

)
− ργ

= ρ∆A′ + ρ2(log(Pr
′′+)− log(Pr

′′
)) + ρ(log(1− Pr′+)− log(1− Pr′))

= ρ∆A′ + ρ∆B′ + ρ(log(1− Pr′+)− log(1− Pr′)) (32)

where ∆A′ is the next-period difference between counterfactual and actual A. ∆B can be rewritten
using the following recursion:

∆B = ρ∆A′ + ρ(log(1− Pr′+)− log(1− Pr′)) + ρ∆B′

= ρ∆A′ + ρ2∆A′′ + ρ
(
log(1− Pr′+)− log(1− Pr′)

)
(33)

+ ρ2
(
log(1− Pr

′′+)− log(1− Pr
′′
)
)
+∆B

′′

where we denote the next period’s next-period logged probability of adopting as log(Pr′′) and
log(Pr′′+), and additional future probabilities of adopting as log(Pr

′
s) and log(Pr

′
s+).
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The expression for ∆B in (33) is a recursive sum that can rewritten as:

∆B =

∞∑
s=1

ρs∆A
′
s +

∞∑
s=1

ρs

(
log

(
1− Pr

′
s+

1− Pr′
s

))
, (34)

The s subscript on A
′
s and Pr

′
s indicates that A, Pr, and Pr′+ change in future periods based

on the evolution of the state variables and are affected by the counterfactual changes (electricity
prices, solar prices, etc.). Each recursion produces ∆A′ that is equal to ∆A scaled by ρ,57 as
well as a discounted logged ratio of the probability of not adopting in the next period under the
counterfactual to the probability of not adopting in the next period under the baseline. While this
ratio is close to unity, a positive ∆A, for example, will result in a higher probability of adopting in
subsequent periods, decreasing the probability of not adopting and decreasing the logged ratio.

To calculate the second term in equation (34), we forward-simulate the deterministic progression
of C and q∗p̄ to the period s = S = 151 using the trends given by η and ζb,z. We assume that all
households will make a terminal choice at this time period, and calculate the expected value of

that choice as log(exp(
δ
(S)
1
σ ) + exp(0)) + γ. Setting s = 150, we substitute the expected value of not

adopting as the previous quantity scaled by ρ and calculate the probability of adopting at s = 150.
We record the log of one minus that probability, scaled by ρs. We then iterate from s = 150 to s = 0,
taking a cumulative sum of log(1− Pr) at each value of s. At s = 0, we discard the continuation
value in favor of using Equation 34, and substitute the cumulative sum of log(1 − Pr) for the
denominator of the second term. We then calculate δ1 under the counterfactual – a straightforward
task for any counterfactual that re-scales C and/or q∗p̄, and repeat the process to calculate the
numerator of the second term in 34.

The first term in equation (34) is straightforward. Adding ∆A′ to 34, we see:

∆A+∆B =
∞∑
s=0

ρs∆A
′
s +

∞∑
s=1

ρs

(
log

(
1− Pr

′
s+

1− Pr′
s

))
,

which allows for closed form calculation of the infinite sum of the first term, including cases
where ∆A′ = η∆A, as is the case when counterfactual changes apply to the variable cost term.

Finally, with ∆A+∆B in hand, we calculate the counterfactual Pr
′+ using Equation 30.

K.2 Counterfactual Subsidy Amounts

Exported to grid Subsidy Title Per-W Per-install

30% Per-W only $0.30 $0
30% Per-W and per-install $0.15 $731
50% Per-W only $0.84 $0
50% Per-W and per-install $0.42 $1,961

We set the total subsidy amount equal to half of the reduction in utility expenditures from
the NEM reform before allowing for re-sizing, splitting this in half again between per-W and

57For example, under a counterfactual price change that scales the variable cost of solar by some amount in
every period, ∆A is equal to that difference in the variable installation costs and we have that ∆A′ = η∆A.
A counterfactual change in the fixed costs of solar leads to ∆A′ = ∆A.
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per-install subsidies. For each possible share exported to grid, we then adjust these subsidies
upwards proportionally until the net change in high-wealth households is equal to zero, an increase
of approximately 4%. Actual reductions in the utility expenditures depend on both the re-sizing
conditional on export rates and subsidies, and the adoption decision conditional on export rates,
subsidies, and optimal size. We report changes in adoption inclusive of these adjustments in Table 5.
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L Counterfactual Welfare-Relevant Outcomes

L.1 Calculation Methodology

We formulate demand as the probabilistic quantity of capacity installed as a function of the fixed
and variable costs of installation:

dibet(Ct) = K∗(Ct, pt; γi, ei, bi)P̃ r
adopt

(Ct, FCi, pt, ei, bi, Xi,K
∗(Ct, pt; γi, ei, bi)), (35)

where K∗ is the optimal sizing function, Ct is the per-watt cost of a panel at time t, pt are the
retail electricity rates, γi represents the roof profile of household i, and bi and ei are household
consumption bin b and type e, respectively. This represents quantity (in watts of solar capacity)
demanded conditional on adopting. Fi is the fixed cost of installation which does not enter the

optimal sizing K∗. P̃ r
adopt

is the unconditional probability of adopting conditional on K∗, household
demographics Xi, time t, type, consumption bin, F , Ct, and pt. We can use model predictions

to estimate a conditional probability of adopting Pradopt. Thus, we calculate P̃ r
adopt

using the
following:

P̃ r
adopt
t = Πt

s=1

(
1− 1(s ≥ 2)Pradoptt−s+1

)
Pradoptt

For each household, type, consumption bin, time period, and value of Ct, we calculate K∗ as a
function of price, generate q∗p̄ and TC, and use the adoption model to calculate the probability of
adopting.

L.1.1 Consumer surplus

Household surplus is calculated by integrating equation (35) over average cost per watt, defined as:

CSibe =
10∑
t=1

∫ m

0

(
C̃t + x

)
dibet(C̃t + x)dx,

where the term C̃t is given as:

C̃t =
F +K∗Ct

K∗ .

The upper limit of integration m is chosen to approximate the intercept of the demand curve.
Because Type I extreme value shocks are unbounded, the probability of adopting never reaches 0.
In practice, we numerically integrate over the range of [0, 5.60], and assume that the probability of
adopting when C̃t is $5.60 per watt larger than what is observed in the data is negligible.58 The
consumer surplus, weighted by the unconditional probability of adopting, is summed over the 10
time periods in the sample.

Because K∗, q∗, and other important quantities vary over time within a household and type, we
calculate the expected capacity installed, generation, government expenditures including counterfac-
tual subsidies and expenditures on the federal investment tax credit (ITC), utility expenditures,
and avoided damages using a similar equation, which appropriately weights each time period by the
probability of not adopting prior to that period and the probability of adopting:

58the maximum value of C̃t in our data is $4.17/W.
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K∗
ibe =

10∑
t=1

P̃ r
adopt
t K∗

ibet. (36)

Finally, we take the weighted sum across type and consumption bin using wibe, resulting in a
total for each household in our sample.

L.1.2 Government expenditures

Counterfactual 3 explores the replacement of the NEM embedded subsidy with an explicit subsidy
paid per-watt and per-installation. In addition to explicit subsidies, payment of the federal ITC will
change under the counterfactuals (e.g., fewer households might adopt smaller systems). We report
these effects as ∆GovernmentExpenditures. Changes in private expenditures are accounted for in
CSi.

L.1.3 Utility profits and expenditures

We evaluate the change in utility expenditures by considering the subsidies embedded in the NEM
policy. Because current NEM policy provides electric bill savings in excess of the avoided cost savings,
the difference between the avoided cost and p̄ is an embedded subsidy. Furthermore, critics of NEM
policy note that the embedded NEM subsidy is substantial, is primarily paid to high-wealth solar
adopters, and increases electricity prices on lower-wealth non-adopters. Our second counterfactual
is based on a reform of NEM policy that does not entirely eliminate the embedded subsidy – under
this counterfactual, households can no longer “bank” excess solar generation (and are instead paid
at the avoided cost rate for export to the grid). Thus, we calculate the change in utility expenditures
as the change in the embedded NEM subsidy, calculated as:

∆UtilityExpendituresibet = θ6%

(
(1− s)× q∗

′
(p̄′ − 0.062)− q∗(p̄− 0.062)

)
in which θ6% is the value of θ with a 6% discount rate (an appropriate rate for an investor-owned
utility), s is the export share s ∈ {0.3, 0.5}, SubsW and SubsI are the explicit subsidies, q∗

′
and

p̄′ are counterfactual generation and average value of offset electricity after resizing. p̄′ ≥ p̄ as
the average value of non-grid-exported electricity increases as more is exported to the grid. We
calculate total ∆Subsidyi using equation (36) and then summing over type and consumption using
the weights wibe.

L.1.4 Installer surplus

The installer margin for any given installation is given by p( msolar

1+msolar ), where p is the installation price
inclusive of the ITC. We assume a 71% margin (main manuscript Section 7.3), which corresponds to
a markup of 2.5. We can replace price with expected revenue to calculate installer surplus (pre-tax).
We report aggregated installer surplus in relevant welfare tables. For contribution to the MVPF, we
calculate the fiscal externality on government expenditures in Appendix M.1.

L.1.5 Environmental damages avoided

A primary goal of NEM policy is to encourage the adoption of renewable energy in order to decrease
negative externalities associated with fossil-fuel based electricity generation. Counterfactual welfare
calculations include a “dollarization” of environmental and health damages avoided based on Sexton
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et al. (2021), which calculates the hourly marginal emissions factors for all dispatchable generators
capable of serving, inter alia, the relevant portion of the grid operated by the California Independent
System Operator (CAISO) during the period including 2014-2016. These marginal emissions factors
for each potentially responding plant are calculated as dollars of damages per unit of emissions
of three criteria pollutants: NOx, SOx, and PM2.5, plus CO2 emissions.59 Yearly damages are
calculated for each potentially responding plant based on emissions location, local dispersion, and
local population density and composition. Dollarized yearly damages are then summed over all
potentially responding plants based on estimated responsiveness. Hourly generation profiles for each
zip code in the sample are used to convert one watt of capacity K to avoided emissions, and yearly
damages are summed to the 25-year lifetime of the panel using a 2% social discount rate, a value
of λ = 0.8%, and an expected decline in grid emissions equal to 1.75% per year. Finally, we sum
expected environmental damages avoided over sample time and type as noted before.

L.2 Counterfactual Welfare Results

Counterfactual per-W and per-install subsidies are as follows:

Table L.1: Total Welfare for a 50% export rate.

Consumer Installer Gov Subsidy Gov ITC Utility Avoided Total Total Total
Wealth Surplus Surplus Expenditures Expenditures Surplus Damages Adoptions Capacity Generation Generation

$1,000’s $1,000’s $1,000’s $1,000’s $1,000’s $1,000’s kW MWh/y kWhy/kW

Baseline
High $42.2 $46.6 $0.0 $19.6 -$55.0 $44.0 2545 14,014 21,046 1,502
Med $35.4 $56.5 $0.0 $23.7 -$63.5 $53.7 3091 17,007 26,898 1,582
Low $15.7 $29.4 $0.0 $12.3 -$30.5 $27.7 1777 8,769 13,797 1,573
All $93.3 $132.5 $0.0 $55.7 -$149.0 $125.4 7413 39,791 61,741 1,552

Lowered Compensation for Exported Solar
High $28.3 $38.4 $0.0 $16.1 -$35.8 $36.1 2347 11,494 17,530 1,525
Med $27.2 $45.2 $0.0 $19.0 -$40.0 $42.7 2730 13,535 21,618 1,597
Low $13.4 $23.9 $0.0 $10.0 -$19.1 $22.3 1654 7,038 11,216 1,594
All $68.9 $107.5 $0.0 $45.2 -$94.8 $101.1 6731 32,068 50,365 1,571

Lowered Compensation for Exported Solar plus per-W Subsidy
High $33.6 $37.8 $11.6 $15.9 -$42.3 $43.4 2545 13,826 20,831 1,507
Med $34.3 $51.2 $15.7 $21.5 -$54.0 $59.1 3403 18,727 29,598 1,580
Low $17.5 $28.9 $8.8 $12.1 -$27.2 $33.1 2107 10,464 16,422 1,569
All $85.4 $117.8 $36.1 $49.5 -$123.5 $135.6 8054 43,017 66,851 1,554

Lowered Compensation for Exported Solar plus Split Subsidy
High $32.4 $40.1 $10.5 $16.9 -$40.7 $41.5 2535 13,229 20,041 1,515
Med $34.3 $54.1 $14.1 $22.7 -$51.7 $56.2 3395 17,800 28,256 1,587
Low $18.8 $31.9 $8.9 $13.4 -$27.6 $32.8 2264 10,356 16,368 1,581
All $85.4 $126.1 $33.5 $53.0 -$120.0 $130.5 8194 41,385 64,665 1,563

59a Social Cost of Carbon of $175/ton (in $USD2017) is used (Rennert et al., 2022).
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Table L.2: Total Welfare for a 30% export rate.

Consumer Installer Gov Subsidy Gov ITC Utility Avoided Total Total Total
Wealth Surplus Surplus Expenditures Expenditures Surplus Damages Adoptions Capacity Generation Generation

$1,000’s $1,000’s $1,000’s $1,000’s $1,000’s $1,000’s kW MWh/y kWhy/kW

Baseline
High $42.2 $46.6 $0.0 $19.6 -$55.0 $44.0 2545 14,014 21,046 1,502
Med $35.4 $56.5 $0.0 $23.7 -$63.5 $53.7 3091 17,007 26,898 1,582
Low $15.7 $29.4 $0.0 $12.3 -$30.5 $27.7 1777 8,769 13,797 1,573
All $93.3 $132.5 $0.0 $55.7 -$149.0 $125.4 7413 39,791 61,741 1,552

Lowered Compensation for Exported Solar
High $34.7 $43.8 $0.0 $18.4 -$47.5 $41.2 2462 13,136 19,845 1,511
Med $31.9 $52.1 $0.0 $21.9 -$53.4 $49.4 2911 15,647 24,821 1,586
Low $15.1 $27.1 $0.0 $11.4 -$25.4 $25.4 1695 8,044 12,697 1,578
All $81.7 $122.9 $0.0 $51.6 -$126.4 $116.1 7069 36,828 57,362 1,558

Lowered Compensation for Exported Solar plus per-W Subsidy
High $36.6 $43.0 $4.1 $18.0 -$49.6 $43.3 2536 13,792 20,773 1,506
Med $34.3 $54.2 $5.2 $22.8 -$58.9 $55.0 3176 17,403 27,532 1,582
Low $16.5 $28.9 $2.8 $12.1 -$28.7 $29.1 1878 9,209 14,482 1,573
All $87.5 $126.1 $12.1 $53.0 -$137.1 $127.4 7591 40,404 62,787 1,554

Lowered Compensation for Exported Solar plus Split Subsidy
High $36.2 $44.0 $3.9 $18.5 -$49.2 $42.9 2534 13,660 20,603 1,508
Med $34.4 $55.4 $4.9 $23.3 -$58.3 $54.2 3174 17,179 27,206 1,584
Low $17.0 $29.9 $2.8 $12.6 -$28.9 $29.1 1917 9,202 14,494 1,575
All $87.6 $129.3 $11.6 $54.3 -$136.3 $126.2 7626 40,040 62,303 1,556

Table L.3: Changes in Welfare-Relevant Outcomes (Millions $; % Change)

Wealth ∆ Consumer ∆ Installer ∆ Utility ∆ Avoided ∆ Government
Surplus Surplus Surplus Damages Expenditures

Lowered Compensation for Exported Solar
High -$7.5 (-22%) -$2.4 (-7%) $7.5 (16%) -$2.8 (-7%) -$1.2 (-7%)
Med -$3.5 (-11%) -$3.6 (-8%) $10.1 (19%) -$4.3 (-9%) -$1.9 (-8%)
Low -$0.5 (-4%) -$1.9 (-8%) $5.0 (20%) -$2.3 (-9%) -$1.0 (-8%)

All -$11.6 (-14%) -$7.9 (-8%) $22.6 (18%) -$9.3 (-8%) -$4.0 (-8%)

Lowered Compensation for Exported Solar plus Split Subsidy
High -$6.0 (-17%) -$2.1 (-6%) $5.8 (12%) -$1.1 (-3%) $2.8 (13%)
Med -$1.0 (-3%) -$1.0 (-2%) $5.3 (9%) $0.5 (1%) $4.4 (16%)
Low $1.3 (8%) $0.5 (2%) $1.6 (6%) $1.4 (5%) $3.0 (20%)

All -$5.7 (-6%) -$2.6 (-2%) $12.7 (9%) $0.8 (1%) $10.3 (16%)

All estimates assume 30% export to grid.
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M Marginal Value of Public Funds (MVPF)

M.1 MVPF Methodology

The MVPF is the ratio of the policy beneficiaries willingness to pay for a policy to the government
expenditures of the policy (Finkelstein and Hendren, 2020). We calculate the MVPF for counterfac-
tual 2 relative to counterfactual 1 as the addition of up-front subsidies along with the NEM reform
provides an appropriate setting to evaluate those expenditures. We construct the MVPF for each
wealth bin to separately examine the effectiveness of counterfactual 2 spending across the wealth
distribution.

The MVPF takes the form of(
∆′CS +∆′InstallerSurplus+∆′UtilityExpenditures+∆′Damages

)
/∆′GovtExpenditures,

in which ∆′ is the difference between counterfactual 2 and counterfactual 1 values. Under the 50%
export assumption, direct changes in government expenditures via the ITC and subsidies increase
from -$10.5M to +$30.9M (see Table 6 ). However, the MVPF includes the fiscal externality of the
change in government expenditures resulting from changes in tax revenues on utility and installer
profits. Damages and consumer surplus are unchanged in MVPF calculations.

M.1.1 Utility MVPF effects

Following Hahn et al. (2024) and noting that the utility in our case is an investor-owned utility (so
α in their study is zero), we define the government fiscal externality from utility tax revenues as:

(P − [(LCOE + ct) · (1 +m)]) · τ,

in which LCOE is the levelized avoided cost of solar energy.
Further noting that (LCOE+ct) is equal to the avoided cost calculated in E3 (2022), we calculate

the government fiscal externality as the sum across observations of (Pi−0.062)(1+m)τ , weighted by
the probability of adopting. We use a corporate tax rate of τ = 0.10 and an economy-wide markup
of m = 0.08. As an illustrative calculation and to roughly match real-world short-run marginal
borrowing costs, we use θ4%, a government discount rate of 4%, to calculate the present value of
the fiscal externality which reflects the borrowing cost associated with changes in tax revenue. Our
results would scale with different assumptions of the government borrowing rate. Results are shown
in the “Government Expenditures” column of Table 7.

In the MVPF numerator, we take the change in Consumer Surplus, ∆′CS and the calculated
change in damages ∆′Damages directly from Table 6. We account for the change in utility
expenditure as in Table 6, but adjust for markup and the corporate tax rate using the same
assumptions as before. We calculate utility expenditures for each potential adoption and sum over
all observations, weighed by probability of adopting. In order to adjust for markup m and tax rate
τ , we calculate the change in utility expenditures for any possible installation as:

(P − [(LCOE + ct) · (1 +m)]) · (1− τ)
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To calculate the total expected effect, we multiply this number by the probability of the installation
occurring and aggregate across all possible installations. We calculate the present value of this flow
using θ6% as in Appendix L.

Results of this calculation are shown in the “Utility Expenditures” column of Table 7.

M.1.2 Installer MVPF effects

Installer profits change due to the different number and sizes of installations under the counterfactual.
To assess the impact on profits, we again assume a markup of msolar = 2.5 (Appendix L). The
MVPF calculation in (Hahn et al., 2024) accounts for industry average markup m = 0.08 and
divides installer surplus between fiscal externality and installers using corporate tax rate τ = 0.10,
as in utility effects above. We calculate analogous fiscal externalities for installers, using the implied
marginal cost of p

msolar+1
. The surplus generated by a given installation, relative to the economy-wide

average is:

p−
(

p

msolar + 1

)
(1 +m) = p

(
msolar −m

1 +msolar

)
.

We can replace price with revenue to get an expression for the total additional surplus relative to
the economy average, and then multiply by τ to calculate the additional government surplus and by
1− τ to calculate the installers’ surplus.

M.2 MVPF Results

We report MVPF results for the 30% export to grid assumption here.

Table M.1: Changes in Outcomes (Millions $) and Marginal Value of Public Funds from
Comparing the Two Counterfactual Scenarios. Assumes 30% export to grid.

Wealth Consumer Installer Utility Avoided Government MVPF
Surplus Surplus Surplus Damages Expenditures

High $1.5 $0.2 -$1.5 $1.6 $4.2 0.45
Med $2.6 $2.3 -$4.2 $4.8 $6.6 0.82
Low $1.8 $2.0 -$3.0 $3.7 $4.2 1.08

All $5.9 $4.5 -$8.7 $10.1 $15.0 0.79
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